When a task runs more than once (running <->stopping) within one
runnable-quiescent transition, accumulate runtime of multiple runnings
for statistics. This helps to get the task's runtime per schedule when
supposing that a huge time slice is given, which is what we want to
collect for scheduling decisions.
Signed-off-by: Changwoo Min <changwoo@igalia.com>
Remove runtime_boost using slice_boost_prio. Without slice_boost_prio,
the scheduler collects the exact time slice.
Signed-off-by: Changwoo Min <changwoo@igalia.com>
Let's change the function names of update_stat_for_*() as follow their
callers for consistency and less confusion.
Signed-off-by: Changwoo Min <changwoo@igalia.com>
The run_time_boosted_ns calculation requires updated slice_boost_prio,
so updating slice_boost_prio should be done before updating
run_time_boosted_ns.
Signed-off-by: Changwoo Min <changwoo@igalia.com>
In scx_layered, we're using a BPF_MAP_TYPE_HASH map (indexed by pid)
rather than a BPF_MAP_TYPE_TASK_STORAGE, to track local storage for a
task. As far as I can tell, there's no reason we need to be doing this.
We never access the map from user space, and we're even passing a
struct task_struct * to a helper subprog to look up the task context
rather than only doing it by pid.
Using a hashmap is error prone for this because we end up having to
manually track lifecycles for entries in the map rather than relying on
BPF to do it for us. For example, BPF will automatically free a task's
entry from the map when it exits. Let's just use TLS here rather than a
hashmap to avoid issues from this (e.g. we've observed the scheduler
getting evicted because we're accessing a stale map entry after a task
has been destroyed).
Reported-by: Valentin Andrei <vandrei@meta.com>
Signed-off-by: David Vernet <void@manifault.com>
transit_task_stat() is now tracking the same runnable, running, stopping,
quiescent transitions that sched_ext core already tracks and always returns
%true. Let's remove it.
LAVD_TASK_STAT_ENQ is tracking a subset of runnable task state transitions -
the ones which end up calling ops.enqueue(). However, what it is trying to
track is a task becoming runnable so that its load can be added to the cpu's
load sum.
Move the LAVD_TASK_STAT_ENQ state transition and update_stat_for_enq()
invocation to ops.runnable() which is called for all runnable transitions.
Note that when all the methods are invoked, the invocation order would be
ops.select_cpu(), runnable() and then enqueue(). So, this change moves
update_stat_for_enq() invocation before calc_when_to_run() for
put_global_rq(). update_stat_for_enq() updates taskc->load_actual which is
consumed by calc_greedy_ratio() and thus affects calc_when_to_run().
Before this patch, calc_greedy_ratio() would use load_actual which doesn't
reflect the last running period. After this patch, the latest running period
will be reflected when the task gets queued to the global queue.
The difference is unlikely to matter but it'd probably make sense to make it
more consistent (e.g. do it at the end of quiescent transition).
After this change, transit_task_stat() doesn't detect any invalid
transitions.
scx_lavd tracks task state transitions and updates statistics on each valid
transition. However, there's an asymmetry between the runnable/running and
stopping/quiescent transitions. In the former, the runnable and running
transitions are accounted separately in update_stat_for_enq() and
update_stat_for_run(), respectively. However, in the latter, the two
transitions are combined together in update_stat_for_stop().
This asymmetry leads to incorrect accounting. For example, a task's load
should be added to the cpu's load sum when the task gets enqueued and
subtracted when the task is no longer runnable (quiescent). The former is
accounted correctly from update_stat_for_enq() but the latter is done
whenever the task stops. A task can transit between running and stopping
multiple times before becoming quiescent, so the asymmetry can end up
subtracting the load of a task which is still running from the cpu's load
sum.
This patch:
- introduces LAVD_TASK_STAT_QUIESCENT and updates transit_task_stat() so
that it can handle all valid state transitions including the multiple back
and forth transitions between two pairs - QUIESCENT <-> ENQ and RUNNING
<-> STOPPING.
- restores the symmetry by moving load adjustments part from
update_stat_for_stop() to new update_stat_for_quiescent().
This removes a good chunk of ignored transitions. The next patch will take
care of the rest.
lookup_task_ctx(), lookup_task_ctx_may_fail(), and lookup_layer()
currently don't have the static keyword, so BPF may treat them as a
global function. We don't actually want these to be global, so let's
make them static to avoid confusing the verifier.
Signed-off-by: David Vernet <void@manifault.com>
The old approach is mapping [0, maximum latency criticliy] to [-boost
range, boost range). This approach is easily affected by one outlier
maximum value and suffers from the integer truncation error. The new
approach divides the range into two -- [minimum latency criticality,
average latency criticality) and [average latency criticality, maximum
latency criticality] -- and maps them into [boost range/2, 0) and [0,
-boost range/2), respectively,
Signed-off-by: Changwoo Min <changwoo@igalia.com>
As described in https://github.com/sched-ext/scx/issues/195, apparently
some chips don't export information about their cache topology. There's
not much we can do if we don't have that information, so let's just
assume a unified cache per node if that happens.
Andrea suggested this patch -- I'm applying exactly what he proposed,
with a slightly modified comment.
Suggested-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: David Vernet <void@manifault.com>
Replace a latency weight arrary to more skewed one, which is the
inverse of sched_prio_to_slice_weight. It turns out more skewed one
works better under highly CPU-overloaded cases since it gives a longer
deadline to non-latency-critical tasks.
Signed-off-by: Changwoo Min <changwoo@igalia.com>
As the calculated runtime increases by considering the number of
full-time slice consumption, increase the upper bound
(LAVD_LC_RUNTIME_MAX) of runtime to be considered in latency
calculation. Also, add LAVD_SLICE_BOOST_MAX_PRIO to avoid
slice_boost_prio dropping to zero suddenly.
Signed-off-by: Changwoo Min <changwoo@igalia.com>
Take slice_boost_prio -- how many times a full time slice was consumed
-- into consideration in calculating run_time_ns (runtime per schedule).
This improve the accuracy especially when a task is overscheduled and
its time slice is reduced for enforcing fairness.
Signed-off-by: Changwoo Min <changwoo@igalia.com>
Returning prev_cpu after picking an idle CPU will cause the idle CPU
stall because the idle core was already punched out from the idle mask
by the scx core so it is no longer idle from the scx core's point of
view.
This fix conducts the idle core selection at the last step so it never
return prev_cpu after picking the idle core.
Signed-off-by: Changwoo Min <changwoo@igalia.com>
get_task_ctx() and try_get_task_ctx() were added for common error
handling for task lookup failure. Since idle "swapper" task is not under
sched_ext, try_get_task_ctx() is added for the case such that idle task
can be searched.
Signed-off-by: Changwoo Min <changwoo@igalia.com>
We don't need to test SCX_WAKE_SYNC because SCX_WAKE_SYNC should only be
set when SCX_WAKE_TTWU is set.
Signed-off-by: Changwoo Min <changwoo@igalia.com>
scx_lavd is a BPF scheduler that implements an LAVD (Latency-criticality
Aware Virtual Deadline) scheduling algorithm. While LAVD is new and
still evolving, its core ideas are 1) measuring how much a task is
latency critical and 2) leveraging the task's latency-criticality
information in making various scheduling decisions (e.g., task's
deadline, time slice, etc.). As the name implies, LAVD is based on the
foundation of deadline scheduling. This scheduler consists of the BPF
part and the rust part. The BPF part makes all the scheduling decisions;
the rust part loads the BPF code and conducts other chores (e.g.,
printing sampled scheduling decisions).
There were a few issues, e.g. us still mentioning the infeasible weights
problem, and arguments using underscores despite clap rendering them
with dashes. Let's fix them up.
Signed-off-by: David Vernet <void@manifault.com>