scx-upstream/README.md
Andrea Righi cf4883fbf8 meson: introduce serialize build option
With commit 5d20f89a ("scheds-rust: build rust schedulers in sequence"),
schedulers are now built serially one after the other to prevent meson
and cargo from forking NxN parallel tasks.

However, this change has made building a single scheduler much more
cumbersome, due to the chain of dependencies.

For example, building scx_rusty using the specific meson target would
still result in all schedulers being built, because they all depend on
each other.

To address this issue, introduce the new meson build option
`serialize=true|false` (default is false).

This option allows to disable the schedulers' build chain, restoring the
old behavior.

With this option enabled, it is now possible to build just a single
scheduler, parallelizing the cargo build properly, without triggering
the build of the others. Example:

  $ meson setup build -Dbuildtype=release -Dserialize=false
  $ meson compile -C build scx_rusty

Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
2024-06-28 10:17:37 +02:00

408 lines
16 KiB
Markdown

# Sched_ext Schedulers and Tools
[sched_ext](https://github.com/sched-ext/scx) is a Linux kernel feature
which enables implementing kernel thread schedulers in BPF and dynamically
loading them. This repository contains various scheduler implementations and
support utilities.
sched_ext enables safe and rapid iterations of scheduler implementations, thus
radically widening the scope of scheduling strategies that can be experimented
with and deployed; even in massive and complex production environments.
- The [scx_layered case
study](https://github.com/sched-ext/scx/blob/case-studies/case-studies/scx_layered.md)
concretely demonstrates the power and benefits of sched_ext.
- For a high-level but thorough overview of the sched_ext (especially its
motivation), please refer to the [overview document](OVERVIEW.md).
- For a description of the schedulers shipped with this tree, please refer to
the [schedulers document](scheds/README.md).
- The following video is the [scx_rustland](https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_rustland)
scheduler which makes most scheduling decisions in userspace Rust code showing
better FPS in terraria while kernel is being compiled. This doesn't mean that
scx_rustland is a better scheduler but does demonstrate how safe and easy it is to
implement a scheduler which is generally usable and can outperform the default
scheduler in certain scenarios.
[scx_rustland-terraria](https://github.com/sched-ext/scx/assets/1051723/42ec3bf2-9f1f-4403-80ab-bf5d66b7c2d5)
While the kernel feature is not upstream yet, we believe sched_ext has a
reasonable chance of landing upstream in the foreseeable future. Both Meta
and Google are fully committed to sched_ext and Meta is in the process of
mass production deployment. See (#kernel-feature-status) for more details.
In all example shell commands, `$SCX` refers to the root of this repository.
## Getting Started
All that's necessary for running sched_ext schedulers is a kernel with
sched_ext support and the scheduler binaries along with the libraries they
depend on. Switching to a sched_ext scheduler is as simple as running a
sched_ext binary:
```
root@test ~# cat /sys/kernel/sched_ext/state /sys/kernel/sched_ext/*/ops 2>/dev/null
disabled
root@test ~# scx_simple
local=1 global=0
local=74 global=15
local=78 global=32
local=82 global=42
local=86 global=54
^Zfish: Job 1, 'scx_simple' has stopped
root@test ~# cat /sys/kernel/sched_ext/state /sys/kernel/sched_ext/*/ops 2>/dev/null
enabled
simple
root@test ~# fg
Send job 1 (scx_simple) to foreground
local=635 global=179
local=696 global=192
^CEXIT: BPF scheduler unregistered
```
[`scx_simple`](https://github.com/sched-ext/scx/blob/main/scheds/c/scx_simple.bpf.c)
is a very simple global vtime scheduler which can behave acceptably on CPUs
with a simple topology (single socket and single L3 cache domain).
Above, we switch the whole system to use `scx_simple` by running the binary,
suspend it with `ctrl-z` to confirm that it's loaded, and then switch back
to the kernel default scheduler by terminating the process with `ctrl-c`.
For `scx_simple`, suspending the scheduler process doesn't affect scheduling
behavior because all that the userspace component does is print statistics.
This doesn't hold for all schedulers.
In addition to terminating the program, there are two more ways to disable a
sched_ext scheduler - `sysrq-S` and the watchdog timer. Ignoring kernel
bugs, the worst damage a sched_ext scheduler can do to a system is starving
some threads until the watchdog timer triggers.
As illustrated, once the kernel and binaries are in place, using sched_ext
schedulers is straightforward and safe. While developing and building
schedulers in this repository isn't complicated either, sched_ext makes use
of many new BPF features, some of which require build tools which are newer
than what many distros are currently shipping. This should become less of an
issue in the future. For the time being, the following custom repositories
are provided for select distros.
## Install Instructions by Distro
- [Ubuntu](INSTALL.md#ubuntu)
- [Arch Linux](INSTALL.md#arch-linux)
- [Fedora](INSTALL.md#fedora)
- [Nix](INSTALL.md#nix)
## Repository Structure
```
scx
|-- scheds : Sched_ext scheduler implementations
| |-- include : Shared BPF and user C include files including vmlinux.h
| |-- c : Example schedulers - userspace code written C
| \-- rust : Example schedulers - userspace code written Rust
\-- rust : Rust support code
\-- scx_utils : Common utility library for rust schedulers
```
## Build & Install
`meson` is the main build system but each Rust sub-project is its own
self-contained cargo project and can be built and published separately. The
followings are the dependencies and version requirements.
**Note**: Many distros only have earlier versions of `meson`, in that case just [clone the meson
repo](https://mesonbuild.com/Quick-guide.html#installation-from-source) and call
`meson.py` e.g. `/path/to/meson/repo/meson.py compile -C build`. Alternatively, use `pip` e.g.
`pip install meson` or `pip install meson --break-system-packages` (if needed).
- `meson`: >=1.2, build scripts under `meson-scripts/` use `bash` and
standard utilities including `awk`.
- `clang`: >=16 required, >=17 recommended
- `libbpf`: >=1.2.2 required, >=1.3 recommended (`RESIZE_ARRAY` support is
new in 1.3). It's preferred to link statically against the source from the libbpf git repo, which is cloned during setup.
- Rust toolchain: >=1.72
- `libelf`, `libz`, `libzstd` if linking against staic `libbpf.a`
- `bpftool` By default this is cloned and built as part of the default build process. Alternatively it's usually available in `linux-tools-common`.
The kernel has to be built with the following configuration:
- `CONFIG_BPF=y`
- `CONFIG_BPF_EVENTS=y`
- `CONFIG_BPF_JIT=y`
- `CONFIG_BPF_SYSCALL=y`
- `CONFIG_DEBUG_INFO_BTF=y`
- `CONFIG_FTRACE=y`
- `CONFIG_SCHED_CLASS_EXT=y`
### Setting Up and Building
`meson` always uses a separate build directory. Running the following
commands in the root of the tree builds and installs all schedulers under
`~/bin`.
#### Static linking against libbpf (preferred)
```
$ cd $SCX
$ meson setup build --prefix ~
$ meson compile -C build
$ meson install -C build
```
Notes: `meson setup` will also clone both libbpf and bpftool repos and `meson compile` will build them both.
Make sure you have dependencies installed that allow you to compile from source!
##### Ubuntu/Debian
```
apt install gcc-multilib build-essential libssl-dev
```
##### Arch Linux
```
pacman -S base-devel
```
### Static linking against system libbpf
Note, depending on your system configuration `libbpf_a` and `libbpf_h` may be
in different directories. The system libbpf version needs to match the minimum
libbpf version for scx.
```
$ cd $SCX
$ meson setup build --prefix ~ -D libbpf_a=/usr/lib64/libbpf.a libbpf_h=/usr/include/bpf/
$ meson compile -C build
$ meson install -C build
```
#### Dynamic linking against libbpf
```
$ cd $SCX
$ meson setup build --prefix ~ -D libbpf_a=disabled
$ meson compile -C build
$ meson install -C build
```
#### Using a different bpftool
This will check the system for an installed bpftool
```
$ meson setup build --prefix ~ -D bpftool=disabled
```
Using a custom built bpftool
```
$ meson setup build --prefix ~ -D bpftool=/path/to/bpftool
```
Note that `meson compile` step is not strictly necessary as `install`
implies `compile`. The above also will build debug binaries with
optimizations turned off, which is useful for development but they aren't
optimized and big. For actual use you want to build release binaries.
`meson` uses `-D` argument to specify build options. The configuration
options can be specified at `setup` time but can also be changed afterwards
and `meson` will do the right thing. To switch to release builds, run the
following in the build directory and then compile and install again.
```
$ meson configure -Dbuildtype=release
```
Running `meson configure` without any argument shows all current build
options. For more information on `meson` arguments and built-in options,
please refer to `meson --help` and its
[documentation](https://mesonbuild.com/Builtin-options.html).
### Building Specific Schedulers and Binary Locations
If you just want to build a subset of schedulers, you can specify the
scheduler names as arguments to `meson compile`. For example, if we just
want to build the simple example scheduler
`scheds/c/scx_simple` and the Rust userspace scheduler
`scheds/rust/scx_rusty`:
```
$ cd $SCX
$ meson setup build -Dbuildtype=release
$ meson compile -C build scx_simple scx_rusty
```
:warning: **If your system has `sccache` installed**: `meson` automatically
uses `sccache` if available. However, `sccache` fails in one of the build
steps. If you encounter this issue, disable `sccache` by specifying `CC`
directly - `$ CC=clang meson setup build -Dbuildtype=release`.
You can also specify `-v` if you want to see the commands being used:
```
$ meson compile -C build -v scx_pair
```
For C userspace schedulers such as the ones under `scheds/c`,
the built binaries are located in the same directory under the build root.
For example, here, the `scx_simple` binary can be found at
`$SCX/build/scheds/c/scx_simple`.
For Rust userspace schedulers such as the ones under `scheds/rust`, the
same directory under the build root is used as the cargo build target
directory. Thus, here, the `scx_rusty` binary can be found at
`$SCX/build/scheds/rust/scx_rusty/release/scx_rusty`.
### SCX specific build options
While the default options should work in most cases, it may be desirable to
override some of the toolchains and dependencies - e.g. to directly use
`libbpf` built from the kernel source tree. The following `meson` build
options can be used in such cases.
- `bpf_clang`: `clang` to use when compiling `.bpf.c`
- `bpftool`: `bpftool` to use when generating `.bpf.skel.h`. Set this to "disabled" to check the system for an already installed bpftool
- `libbpf_a`: Static `libbpf.a` to use. Set this to "disabled" to link libbpf dynamically
- `libbpf_h`: `libbpf` header directories, only meaningful with `libbpf_a` option
- `cargo`: `cargo` to use when building rust sub-projects
- 'cargo_home': 'CARGO_HOME env to use when invoking cargo'
- `offline`: 'Compilation step should not access the internet'
- `enable_rust`: 'Enable the build of rust sub-projects'
- `serialize`: 'Enable/disable the sequential build of the schedulers. Set this to false if you need to build just one scheduler.'
For example, let's say you want to use `bpftool` and `libbpf` shipped in the
kernel tree located at `$KERNEL`. We need to build `bpftool` in the kernel
tree first, set up SCX build with the related options and then build &
install.
```
$ cd $KERNEL
$ make -C tools/bpf/bpftool
$ cd $SCX
$ BPFTOOL=$KERNEL/tools/bpf/bpftool
$ meson setup build -Dbuildtype=release -Dprefix=~/bin \
-Dbpftool=$BPFTOOL/bpftool \
-Dlibbpf_a=$BPFTOOL/libbpf/libbpf.a \
-Dlibbpf_h=$BPFTOOL/libbpf/include
$ meson install -C build
```
Note that we use `libbpf` which was produced as a part of `bpftool` build
process rather than buliding `libbpf` directly. This is necessary because
`libbpf` header files need to be installed for them to be in the expected
relative locations.
### Offline Compilation
Rust builds automatically download dependencies from crates.io; however,
some build environments might not allow internet access requiring all
dependencies to be available offline. The `fetch` target and `offline`
option are provided for such cases.
The following downloads all Rust dependencies into `$HOME/cargo-deps`.
```
$ cd $SCX
$ meson setup build -Dcargo_home=$HOME/cargo-deps
$ meson compile -C build fetch
```
The following builds the schedulers without accessing the internet. The
`build` directory doesn't have to be the same one. The only requirement is
that the `cargo_home` option points to a directory which contains the
content generated from the previous step.
```
$ cd $SCX
$ meson setup build -Dcargo_home=$HOME/cargo-deps -Doffline=true -Dbuildtype=release
$ meson compile -C build
```
### Working with Rust Sub-projects
Each Rust sub-project is its own self-contained cargo project. When buildng
as a part of this repository, `meson` invokes `cargo` with the appropriate
options and environment variables to sync the build environment. When
building separately by running `cargo build` directly in a sub-project
directory, it will automatically figure out build environment. Please take a
look at the
[`scx_utils::BpfBuilder`](https://docs.rs/scx_utils/latest/scx_utils/struct.BpfBuilder.html)
documentation for details.
For example, the following builds and runs the `scx_rusty` scheduler:
```
$ cd $SCX/scheds/rust/scx_rusty
$ cargo build --release
$ cargo run --release
```
Here too, the `build` step is not strictly necessary as it's implied by
`run`.
Note that Rust userspace schedulers are published on `crates.io` and can be
built and installed without cloning this repository as long as the necessary
toolchains are available. Simply run:
```
$ cargo install scx_rusty
```
and `scx_rusty` will be built and installed as `~/.cargo/bin/scx_rusty`.
## systemd services
See: [services](services/README.md)
## Kernel Feature Status
The kernel feature is not yet upstream and can be found in the
[sched_ext](https://github.com/sched-ext/sched_ext) repository. The
followings are important branches:
- [`sched_ext`](https://github.com/sched-ext/sched_ext): The main development
branch. This branch periodically pulls from the
[bpf-next](https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/)
tree to stay in sync with the kernel and BPF developments.
- `sched_ext-release-*`: sched_ext backports on top of released kernels. We
plan to maintain backports for a few recent kernel releases until
sched_ext is merged upstream. Currently maintained backports:
- [`sched_ext-release-v6.6`](https://github.com/sched-ext/sched_ext/tree/sched_ext-release-v6.6)
- `sched_ext-vN`: Patchsets posted upstream. The v4 LKML thread has
high-level discussions.
- [RFC](https://github.com/htejun/sched_ext):
[LMKL thread](http://lkml.kernel.org/r/20221130082313.3241517-1-tj@kernel.org)
- [`sched_ext-v2'](https://github.com/sched-ext/sched_ext/tree/sched_ext-v2):
[LKML thread](http://lkml.kernel.org/r/20230128001639.3510083-1-tj@kernel.org)
- [`sched_ext-v3'](https://github.com/sched-ext/sched_ext/tree/sched_ext-v3):
[LKML thread](http://lkml.kernel.org/r/20230317213333.2174969-1-tj@kernel.org)
- [`sched_ext-v4'](https://github.com/sched-ext/sched_ext/tree/sched_ext-v4):
[LKML thread](http://lkml.kernel.org/r/20230711011412.100319-1-tj@kernel.org)
- [`sched_ext-v5'](https://github.com/sched-ext/sched_ext/tree/sched_ext-v5):
[LKML thread](http://lkml.kernel.org/r/20231111024835.2164816-1-tj@kernel.org)
## [Breaking Changes](./BREAKING_CHANGES.md)
[A list of the breaking changes](./BREAKING_CHANGES.md) in the sched_ext kernel tree and the associated commits for the schedulers in this repo.
## Getting in Touch
We aim to build a friendly and approachable community around sched_ext. You
can reach us through the following channels:
- github: https://github.com/sched-ext/scx
- Slack: [https://schedextworkspace.slack.com](https://join.slack.com/t/schedextworkspace/shared_invite/zt-24c4on3sk-sHlozdLfCZBODfwU6t6dbw)
- Reddit: https://reddit.com/r/sched_ext
We also hold weekly office hours every monday. Please see the #office-hours
channel on slack for details. To join the slack community, you can use [this
link](https://bit.ly/scx_slack).
## Additional Resources
There are blog posts and articles about sched_ext, which helps you to explore
sched_ext in various ways. Followings are some examples:
- [LWN: The extensible scheduler class (February, 2023)](https://lwn.net/Articles/922405/)
- [arighi's blog: Implement your own kernel CPU scheduler in Ubuntu with sched-ext (July, 2023)](https://arighi.blogspot.com/2023/07/implement-your-own-cpu-scheduler-in.html)
- [Changwoo's blog: sched_ext: a BPF-extensible scheduler class (Part 1) (December, 2023)](https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/)
- [arighi's blog: Getting started with sched-ext development (April, 2024)](https://arighi.blogspot.com/2024/04/getting-started-with-sched-ext.html)
- [Changwoo's blog: sched_ext: scheduler architecture and interfaces (Part 2) (June, 2024)](https://blogs.igalia.com/changwoo/sched-ext-scheduler-architecture-and-interfaces-part-2/)