Currently if the scx.service is failing to launch due issues, systemd will try to start the scheduler all the time.
This results into a massive flood to the kernel and does not bring the service up again.
explanation of the changes:
The StartLimitBurst=2 and StartLimitIntervalSec=30 settings tell systemd that if the service unsuccessfully tries to restart itself twice within 30 seconds, it should enter a failed state and no longer try to restart. This ensures that if the service is truly broken, systemd won't continuously try to restart it.
Signed-off-by: Peter Jung <admin@ptr1337.dev>
Replace the BPF_MAP_TYPE_QUEUE with a BPF_MAP_TYPE_USER_RINGBUF to store
the tasks dispatched from the user-space scheduler to the BPF component.
This eliminates the need of the bpf() syscalls, significantly reducing
the overhead of the user-space->kernel communication and delivering a
notable performance boost in the overall system throughput.
Based on experimental results, this change allows to reduces the scheduling
overhead by approximately 30-35% when the system is overcommitted.
This improvement has the potential to make user-space schedulers based
on scx_rustland_core viable options for real production systems.
Link: https://github.com/libbpf/libbpf-rs/pull/776
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
scx_rusty's intention is to support hotplug by automatically restarting
whenever a hotplug event is encountered. Now that we're not trying to
consume a bogus DSQ in the rusty_dispatch() on a newly hotplugged CPU,
let's just remove offline tracking. It's really just there as a sanity
check, but it triggers if an offline task is made runnable during a
hotplug event before the ops.hotplug() callback has been invoked.
Signed-off-by: David Vernet <void@manifault.com>
There's currently a slight issue on existing kernels on the hotplug
path wherein we can start to receive scheduling callbacks on a CPU
before that CPU has received hotplug events. For CPUs going online, this
can possibly confuse a scheduler because it may not be expecting
anything to ever happen on that CPU, and therefore may do things that
could cause the scheduler to crash. For example, without this patch in
scx_rusty, we try to consume from a bogus DSQ that doesn't exist, which
causes ext.c to boot out the scheduler.
Though this issue will soon be fixed in ext.c, let's explicitly avoid
dispatching from an onlining CPU in rusty so that we properly support
hotplug on older kernels as well.
Signed-off-by: David Vernet <void@manifault.com>
We can hint to the compiler about paths we'll take in a scheduler. This
is a common pattern, so lets provide convenience macros.
Signed-off-by: David Vernet <void@manifault.com>
scx_lavd implemented 32 and 64 bit versions of a base-2 logarithm
function. This is now also used in rusty. To avoid code duplication,
let's pull it into a shared header.
Note that there is technically a functional change here as we remove the
always inline compiler directive. We instead assume that the compiler
will know best whether or not to inline the function.
Signed-off-by: David Vernet <void@manifault.com>
In user space in rusty, the tuner detects system utilization, and uses
it to inform how we do load balancing, our greedy / direct cpumasks,
etc. Something else we could be doing but currently aren't, is using
system utilization to inform how we dispatch tasks. We currently have a
static, unchanging slice length for the runtime of the program, but this
is inefficient for all scenarios.
Giving a task a long slice length does have advantages, such as
decreasing the number of involuntary context switches, decreasing the
overhead of preemption by doing it less frequently, possibly getting
better cache locality due to a task running on a CPU for a longer amount
of time, etc. On the other hand, long slices can be problematic as well.
When a system is highly utilized, a CPU-hogging task running for too
long can harm interactive tasks. When the system is under-utilized,
those interactive tasks can likely find an idle, or under-utilized core
to run on. When the system is over-utilized, however, they're likely to
have to park in a runqueue.
Thus, in order to better accommodate such scenarios, this patch
implements a rudimentary slice scaling mechanism in scx_rusty. Rather
than having one global, static slice length, we instead have a dynamic,
global slice length that can be changed depending on system utilization.
When over-utilized, we go with a longer slice length, and vice versa for
when the system is under-utilized. With Terraria, this results in
roughly a 50% improvement in mean FPS when playing on an AMD Ryzen 9
7950X, while running Spotify, and stress-ng -c $((4 * $(nproc))).
Signed-off-by: David Vernet <void@manifault.com>
scx_rusty doesn't do terribly well with interactive workloads. In order
to improve the situation, this patch adds support for basic deadline
scheduling in rusty. This approach doesn't incorporate eligibility, and
simply uses a crude avg_runtime tracking approach to scaling a task's
deadline.
In a series of follow-on changes, we'll update the scheduler to use more
indicators for interactivity that affect both slice length, and deadline
calculation.
Signed-off-by: David Vernet <void@manifault.com>
To know the required CPU performance (e.g., frequency) demand, we keep
track of 1) utilization of each CPU and 2) _performance criticality_ of
each task. The performance criticality of a task denotes how critical it
is to CPU performance (frequency). Like the notion of latency
criticality, we use three factors: the task's average runtime, wake-up
frequency, and waken-up frequency. A task's runtime is longer, and its
two frequencies are higher; the task is more performance-critical
because it would be a bottleneck in the middle of the task chain.
Signed-off-by: Changwoo Min <changwoo@igalia.com>
The current Slack URL gives a link to the Slack workspace, but doesn't
include the invite. Update the URL to include the invite URL to make it
easier for people to join the Slack workspace.
Signed-off-by: Daniel Hodges <hodges.daniel.scott@gmail.com>
Let's remove the extraneous copy pasting and use a lookup helper like we
do for task and pcpu context.
Signed-off-by: David Vernet <void@manifault.com>
A LoadEntity gets the load to transfer between two entities by taking
the minimum of their imbalances and reducing its abs value by
xfer_ratio.
In practice self.imbal(), the push node or domain, always has positive
imbalance and other.imbal(), the pull node or domain, always has
negative imbalance, so other.imbal() is always the minimum even though
the abs value of its imbalance might be greater than the abs value of
self.imbal(). It seems like the intent is to take the minimum of the
two absolute values instead to avoid overbalancing at the puller, so
make both values abs.
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Rusty's load balancer calculates load differently based on average
system CPU utilization in create_domain_hierarchy(). At >= 99.999%
utilization, load is the product of a task's weight and duty cycle;
below that, load is the same as the task's duty cycle.
populate_tasks_by_load(), however, always uses the product when
calculating per-task load so that in the sub-99.999% util case, load is
inflated, typically by a factor of 100 with a normal priority task.
Tasks look too heavy to migrate as a result because a single task would
transfer more load than the domain imbalance allows, leading to
significant imbalance in some cases.
Make populate_tasks_by_load() calculate task load the same way as
domain load, checking lb_apply_weight.
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Add extra info to the README for linking building using system libbpf.
It may not be the preferred way of building, but still could be useful
in certain situations such as making changes against a local libbpf
version.
Signed-off-by: Daniel Hodges <hodges.daniel.scott@gmail.com>
When CDPATH is set the fetch_libbpf build script will cd into
the preferred CDPATH directory. This change removes the CDPATH
environment variable so any preferred CDPATH paths are ignored.
The issue can be reproduced with the following steps:
1) mkdir -p /tmp/libbpf
2) CDPATH=/tmp/ meson setup build --prefix /tmp
The build should fail at the fetch_libbpf step.
Signed-off-by: Daniel Hodges <hodges.daniel.scott@gmail.com>
In order to prevent deadlock conditions user-space schedulers need to
perform memory allocations from a pool of pre-allocated memory that will
never be unmapped/reclaimed by the kernel (unevictable memory).
However, there is a special kernel sysctl setting
(vm.compact_unevictable_allowed) that allows kcompactd to reclaim
unevictable memory. This behavior should be prevented by setting
vm.compact_unevictable_allowed = 0, that is what scx_rustland_core does
transparently when a scheduler is started, restoring the previous value
when the scheduler is stopped.
Unfortunately, this is not always doable, especially when running a
scheduler inside a containerized environment or under certain
security/privilege restrictions (e.g., AppArmor confinement).
Therefore, just report a WARNING if we are unable to change this
parameter, instead of considering it a hard-failure, to allow running
scx_rustland_core schedulers also inside such limited environments.
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
We're failing in CI with:
/usr/include/string.h:26:10: fatal error: 'bits/libc-header-start.h'
file not found
26 | #include <bits/libc-header-start.h>
This header is apparently shipped with the gcc-multilib Ubuntu package,
according to a Stack Overflow post. Let's see if this fixes CI.
Signed-off-by: David Vernet <void@manifault.com>