We are still using Pandoc’s Markdown parser, which differs from CommonMark spec slightly. Notably: - Line breaks in lists behave differently. - Admonitions do not support the simpler syntax https://github.com/jgm/commonmark-hs/issues/75 - The auto_identifiers uses a different algorithm – I made the previous ones explicit. - Languages (classes) of code blocks cannot contain whitespace so we have to use “pycon” alias instead of Python “console” as GitHub’s linguist While at it, I also fixed the following issues: - ShellSesssion was used - Removed some pointless docbook tags.
3.5 KiB
TeX Live
Since release 15.09 there is a new TeX Live packaging that lives entirely under attribute texlive
.
User's guide
-
For basic usage just pull
texlive.combined.scheme-basic
for an environment with basic LaTeX support. -
It typically won't work to use separately installed packages together. Instead, you can build a custom set of packages like this:
texlive.combine { inherit (texlive) scheme-small collection-langkorean algorithms cm-super; }
-
There are all the schemes, collections and a few thousand packages, as defined upstream (perhaps with tiny differences).
-
By default you only get executables and files needed during runtime, and a little documentation for the core packages. To change that, you need to add
pkgFilter
function tocombine
.texlive.combine { # inherit (texlive) whatever-you-want; pkgFilter = pkg: pkg.tlType == "run" || pkg.tlType == "bin" || pkg.pname == "cm-super"; # elem tlType [ "run" "bin" "doc" "source" ] # there are also other attributes: version, name }
-
You can list packages e.g. by
nix repl
.$ nix repl nix-repl> :l <nixpkgs> nix-repl> texlive.collection-[TAB]
-
Note that the wrapper assumes that the result has a chance to be useful. For example, the core executables should be present, as well as some core data files. The supported way of ensuring this is by including some scheme, for example
scheme-basic
, into the combination.
Custom packages
You may find that you need to use an external TeX package. A derivation for such package has to provide contents of the "texmf" directory in its output and provide the tlType
attribute. Here is a (very verbose) example:
with import <nixpkgs> {};
let
foiltex_run = stdenvNoCC.mkDerivation {
pname = "latex-foiltex";
version = "2.1.4b";
passthru.tlType = "run";
srcs = [
(fetchurl {
url = "http://mirrors.ctan.org/macros/latex/contrib/foiltex/foiltex.dtx";
sha256 = "07frz0krpz7kkcwlayrwrj2a2pixmv0icbngyw92srp9fp23cqpz";
})
(fetchurl {
url = "http://mirrors.ctan.org/macros/latex/contrib/foiltex/foiltex.ins";
sha256 = "09wkyidxk3n3zvqxfs61wlypmbhi1pxmjdi1kns9n2ky8ykbff99";
})
];
unpackPhase = ''
runHook preUnpack
for _src in $srcs; do
cp "$_src" $(stripHash "$_src")
done
runHook postUnpack
'';
nativeBuildInputs = [ texlive.combined.scheme-small ];
dontConfigure = true;
buildPhase = ''
runHook preBuild
# Generate the style files
latex foiltex.ins
runHook postBuild
'';
installPhase = ''
runHook preInstall
path="$out/tex/latex/foiltex"
mkdir -p "$path"
cp *.{cls,def,clo} "$path/"
runHook postInstall
'';
meta = with lib; {
description = "A LaTeX2e class for overhead transparencies";
license = licenses.unfreeRedistributable;
maintainers = with maintainers; [ veprbl ];
platforms = platforms.all;
};
};
foiltex = { pkgs = [ foiltex_run ]; };
latex_with_foiltex = texlive.combine {
inherit (texlive) scheme-small;
inherit foiltex;
};
in
runCommand "test.pdf" {
nativeBuildInputs = [ latex_with_foiltex ];
} ''
cat >test.tex <<EOF
\documentclass{foils}
\title{Presentation title}
\date{}
\begin{document}
\maketitle
\end{document}
EOF
pdflatex test.tex
cp test.pdf $out
''