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Abstract

Void processes intend to make it easier for all developers to produce effectively privilege

separated applications. The project has two primary goals: show the merits of starting

from zero privilege, and provide the utilities to make this feasible for the average developer.

Building void processes involves first reliably removing all privilege from a process then

systematically adding back in what is required, and no more. This project utilises names-

paces on Linux to revoke privilege from an application, showing how this can be done

and why its easier in some domains than others. We then show how to inject sufficient

privilege for applications to perform useful work, developing new APIs that are friendly

for privilege separation. These elements compose a shim called the void orchestrator, a

framework for restricting Linux processes.

Two example applications are presented to demonstrate the utility of a shim helping with

privilege separation. The startup performance is negatively affected by the design of the

kernel, and future work is proposed to aid this. After the delay in startup, applications

developed within this framework are shown to be highly performant.

Computer Scientists need better tools to handle the continuing prevalence of vulnerabili-

ties in computer software. Starting from nothing is a new approach to privilege separation

on Linux that has noticeable benefits. Linux should focus on reducing namespace creation

latency however they can, and beginning from nothing is a good way to achieve that.
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Chapter 1

Introduction

Newly spawned processes on modern Linux are exposed to a myriad of attack vectors and

unnecessary privilege: whether the hundreds of system calls available, procfs, exposure

of filesystem objects, or the ability to connect to arbitrary hosts on the Internet.

This thesis argues that we need a framework to restrict Linux processes - removing access

to ambient resources by default - and provide APIs to minimally unlock application access

to the outside world. This approach would have saved many existing applications from

remote exploits by ensuring that processes which handle sensitive user data are sufficiently

deprivileged to utilise remote code execution. The resulting programming interfaces are

far easier to reason about for a novice programmer, and encourage proactive consideration

of security rather than reactive when flaws are exposed.

This project presents a system, the void orchestrator, to enable application developers to

build upwards from a point of zero-privilege. I give a summary of the privilege separation

techniques currently employed in production (§2) and details on how to create an empty

set of namespaces to remove all privilege in Linux (§3). The shortcomings of Linux when

creating empty namespaces are discussed (§3.6,§3.7,§3.8), before setting forth the methods

for re-adding features in each of these domains (§4). Finally, two example applications are

built and evaluated (§5) to show the utility of the system. This report aims to demonstrate

the value of a paradigm shift from reducing a moving target of privilege to adding only

what is necessary.

Prior work exists for privilege separation, including: virtual machines (§2.4); containers
(§2.5); object capabilities (§2.3); unikernels; and applications which run directly on a

Linux host, potentially employing privilege separation of their own (§2.1, §2.2). These

environments are plotted in Figure 1.1, which compares the environment’s support for

Linux APIs and the attack surface remaining. Void processes represent a strong com-

promise between a rich subset of Linux for applications - reducing code changes - and

significantly reducing the attack surface (demonstrated in §3).
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Figure 1.1: Privilege separated environments plotted to compare the number of applica-
tion changes required against the remaining attack surface of the environment.
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Chapter 2

Privilege Separation

Many attack vectors exist in software, notably in argument processing [6] and deseriali-

sation [5]. Creating secure applications requires one of two things: creating applications

without security bugs, or separating the parts of the application with the potential to

cause damage from the parts most likely to contain bugs. Though many efforts have been

made to create correct applications and protocols [18, 22, 24], the use of such technology

is far from widespread and security related bugs in applications are still frequent - over

20,000 Common Vulnerability and Exposure (CVE) reports were published in 2021 1.

Rather than attempting to avoid bugs, we primarily employ privilege separation: ensur-

ing that the privileged portion of the application is separated from the portion which is

likely to be attacked. This chapter details what privilege separation is, why it is useful,

and a summary of some of the privilege separation techniques available in modern Unices.

Many of these techniques are included in some form in the final design for void processes.

2.1 Privilege separation by process

The basic unit of privilege separation on Unix is a process. If it’s possible for an attacker

to gain remote code execution in a process, the attacker gains access to all of that process’s

privilege. Reducing the privilege of a process reduces the value of attacking that process.

One solution to reducing privilege per process is to take a previously monolithic applica-

tion and split it into multiple smaller processes. Consider a TLS supporting web server

that must have access to the certificate’s private keys and also process user requests. If

these elements are split into different processes a compromised user data handling process

cannot access the contents of the private keys.

Application design in this paradigm is similar to that of a distributed system, where

multiple asynchronous systems must interact over various communication channels. As

an application becomes more like a networked system, serialisation and deserialisation

1https://www.cve.org/About/Metrics
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Figure 2.1: Separation of privileged access from untrusted user data in OpenBSD’s priv-
ilege separated syslogd design compared to the previous. The process which handles
untrusted data is separated from the privileged process and uses RPC to communicate.

become more common. As deserialisation is a very common source of exploits [5], this

adds the potential for new flaws in the application.

OpenBSD is a UNIX operating system with an emphasis on security. A recent bug in

OpenBSD’s sshd highlights the utility of privilege separation [15]. An integer overflow

in the pre-authentication logic of the SSH daemon allowed a motivated attacker to exploit

incorrect logic paths and gain access without authentication. Privilege separation ensures

that the process with this bug, the pre-authentication process, is separated from the

process which is able to be exploited, the highly privileged daemon.

In 2003, privilege separation was added to the syslogd daemon of OpenBSD [23]. The

system consists of a highly privileged parent process and a network accepting child process.

The child process can initially make many requests from the parent, but these decrease as

the application progresses. This pattern allows for restarting of the service while keeping

the section which processed user data strongly separated from the process which remains

privileged - the child process can cause its own restart while not holding enough privilege

to execute that restart itself. An overview of the data flow is provided in Figure 2.1.
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2.2 Privilege separation by time

Many applications can privilege separate by using a single process which reduces its

level of privilege as the application makes progress. One begins with high privilege for

opening sensitive resources, such as a listening socket below port 1000. After this has

been completed, the ability to do so is dropped. One of the simplest ways to do this is to

change user using setuid(2) after the privileged requirements are complete. An API

such as OpenBSD’s pledge(2) allows only a pre-specified set of system calls after the

call to pledge(2). A final alternative is to drop explicit capabilities on Linux. Each of

these solutions irreversibly reduce the privilege of the process, meaning that any attacker

who gains control after the privilege has been dropped cannot take advantage of it.

After dropping privilege, it becomes difficult to do things such as reloading the configu-

ration. The application process no longer has the required privilege to restart itself, as if

it could gain it back then dropping the privilege would have had no effect. This avoids

having to treat the application as a distributed system as there continues to be only a

single process to manage, which is often an easier paradigm to work in. The difficulty in

implementing privilege dropping is ensuring that you know what privilege you hold, and

drop it as soon as it is no longer required.

2.3 Privilege separation by ownership

The previous methods shown each suffer from having to know what their initial privilege

is in order to correctly deprivilege. Object capabilities are unforgeable tokens of authority

to perform a set of actions on an object.

While the methods looked at until now of privilege separation by process and time are

widely supported, object capabilities are less common. Capsicum added object capabilities

and was included in FreeBSD 10, released in January 2014 [33]. Capability mode removes

access to all global namespaces from a process, allowing only operations on capabilities to

continue. These capabilities are commonly those opened before the switch to capability

mode, but they can also be sent and received (as file descriptors) or converted from a

capability with more privilege to a capability with less.

Capabilities provide good explicit visibility of privilege, making dropping all but what is

required a simple task. However, their adoption remains limited at this point. They are

unavailable in the latest Linux kernel release (5.17) at the time of writing and there are

no plans for their adoption.
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2.4 Privilege separation by machine

If developing a web application, one might place the PHP backend on one machine and the

database server on another. Even if a bad actor achieves remote access to the exposed

PHP backend, they can only access the database server over its exposed API on the

network, rather than having control of the machine itself. This allows features such as

the database’s access control to remain working, limiting the potential damage of an

attacker controlling the PHP server.

Virtual machines [1, 32] made the separation of privilege by machine more efficient. Rather

than requiring two full servers, one could provide both the PHP backend and the database

server on a single physical machine but different virtual machines. This better utilised

hardware in a time when hardware speed seemed in excess, and provided very strong

isolation (presuming one cannot escape the hypervisor). Though the isolation is strong,

there are overheads associated with full virtualisation, and a more performant solution

was sought.

2.5 Privilege separation by perspective

Namespaces control the view of the world that a process sees. Processes remain the pri-

mary method of separation, but utilise namespaces to increase the separation between

them. The most common use case of namespaces is providing containers, which approxi-

mate virtual machines, providing the appearance of running on an isolated system while

sharing the same host. When performing privilege separation with containers, one spawns

multiple containers to form a distributed system of applications. It is common to see, for

example, a web server and the database that backs it deployed as two separate containers.

These separate containers interact entirely over the network. As with virtual machines,

if a user achieves remote code execution of the database, it does not extend to the web

server. This presents an interesting paradigm of small applications which can and often

do run on separate physical hosts combining to provide a unified application experience.

2.6 Summary

This work focuses on the application of namespaces to more conventional privilege sepa-

ration. Working with a shim which orchestrates the process and namespace layout, void

applications seek to provide a completely minimal Linux experience to each void process

within the application. There is never a need to drop privileges as processes are created

with the absolute minimum privilege necessary to perform correctly. In Chapter 3 we

discuss each namespace’s role in Linux and how to create one which is empty, before

explaining in Chapter 4 how to reinsert just enough Linux for each process in an appli-

cation to be able to complete useful work. These combine to form an architecture which

14



minimises privilege by default, motivating highly intentional privilege separation.
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Chapter 3

Entering the Void

Isolating parts of a Linux system from the view of certain processes is achieved using

namespaces (§2.5). Namespaces are commonly used to provide isolation in the context

of containers, which provide the appearance of an isolated Linux system to contained

processes. Void processes use namespaces to provide a view of a system that is as minimal

as possible, while still running on Linux. In this chapter each namespace available in Linux

5.15 LTS is discussed. The objects each namespace protects are presented and security

vulnerabilities discussed. The method for entering a void with each namespace is given

along with a discussion of the difficulties associated with this without kernel changes.

Chapter 4 goes on to explain how necessary features for applications are added back in.

The full set of namespaces are represented in Table 3.1, in chronological order. The ease of

creating an empty namespace varies significantly, as although adding namespaces shared

the goal of containerisation, they were completed by many different teams of people over

a number of years. Some namespaces maintain strong connections to their parent, while

others are created with absolute separation. We start with those that exhibit the clearest

behaviour when it comes to entering the void, working up to the namespaces most difficult

to separate from their parents.

3.1 IPC namespaces

Inter-Process Communication (IPC) namespaces isolate two Linux IPC mechanisms which

aren’t controlled by the filesystem. System V IPC and POSIX message queues each have

a global namespace of keys. This has created issues in the past with attempting to run

multiple instances of PostgreSQL on a single machine, as both instances use System V

IPC objects which collide [1, §4.3]. Processes are a member of one and only one IPC

namespace, allowing the familiar global key APIs, ad objects behave as follows: [12]:

“Objects created in an IPC namespace are visible to all other processes that are members

of that namespace, but are not visible to processes in other IPC namespaces.”

16



ns date kernel ver. ns CVEs prot. CVEs
mount (§3.6) Feb 2001 [30] 2.5.2 [26] 2020-29373 2021-23021

2021-45083
2022-23653

ipc (§3.1) Oct 2006 [20] 2.6.19 [8] 2015-7613

uts (§3.2) Oct 2006 [17] 2.6.19 [8]

user (§3.7) Jul 2007 [21] 2.6.23 [9] 2021-21284 2021-43816

network (§3.4) Oct 2007 [3] 2.6.24 [10] 2009-1360 2021-44228

pid (§3.5) Oct 2006 [2] 2.6.24 [10] 2019-20794 2012-0056

cgroup (§3.8) Mar 2016 [19] 4.6 [27] 2022-0492

time (§3.3) Nov 2019 [28] 5.6 [11]

Table 3.1: The date and kernel version each namespace was added. The date provides
the date of the first commit where they appeared, and the kernel version the kernel
release they appear in the changelog of. Namespaces are ordered by kernel version then
alphabetically. Some examples are provided of CVEs of each namespace, and CVEs that
each namespace protects against.

This provides exactly the correct semantics for a void process. IPC objects are visible

within a namespace if and only if they are created within that namespace. Therefore,

a new namespace is entirely empty, and no more work need be done. IPC namespaces

represent a relatively small attack surface and appear to function well as a namespace

(a series of searches revealed no results). Similarly, the mature SysV IPC and POSIX

message queues that are isolated show very few bugs. One was found (CVE-2015-7613)

which describes a race condition leading to escalated privilege. Namespacing and hence

void processes protect well against this, as the escalated privilege is isolated to the calling

namespace.

3.2 UTS namespaces

Unix-Time Sharing (UTS) namespaces provide isolation of the hostname and domain

name of a system between processes. This is useful when creating containers, such that

each container can appear as a different machine. UTS namespaces inherit their initial

values - each of the hostname and domain name in the new namespace is initialised to

the values of the parent namespace.

Slightly more must be done than creating a new namespace to avoid information leakage.

This is simple for UTS namespaces, as the host name and domain name can be set to

constants, removing any link to the parent. Although the implementation of this is trivial,

it highlights how easy the information passed between namespaces is to miss if manually

implementing process isolation.
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3.3 Time namespaces

Time namespaces are the final namespace added at the time of writing, added in kernel

version 5.6 [11]. They are motivated in the manual page [14]:

“The motivation for adding time namespaces was to allow the monotonic and boot-time

clocks to maintain consistent values during container migration and checkpoint/restore.”

That is, time namespaces virtualise the appearance of system uptime to processes. They

do not attempt to virtualise wall clock time. This is important for processes that depend

on time in primarily one situation: migration. If an uptime dependent process is migrated

from a machine that has been up for a week to a machine that was booted a minute ago,

the guarantees provided by the clocks CLOCK MONOTONIC and CLOCK BOOTTIME no

longer hold. This results in time namespaces having very limited usefulness in a system

that does not support migration, such as the one presented here. Time namespaces are

thus avoided in this implementation.

Searching the list of released CVEs for both “clock” and “time linux” (“time” itself re-

vealed too many results to parse) shows no vulnerabilities in the time subsystem on Linux,

or time namespaces themselves. This supports not including time namespaces at this

stage, as their range is very limited, particularly in terms of isolation from vulnerabilities.

3.4 Network namespaces

Network namespaces on Linux isolate the system resources related to networking. These

include network interfaces themselves, IP routing tables, firewall rules and the /proc/net

directory. This level of isolation allows for a network stack that operates completely in-

dependently, but does come with a high performance cost (§3.9).

Network namespaces present the optimal namespace for running a void process. Creating

a new network namespace creates a namespace containing only a local loopback adapter.

This means that the new network namespace has no link whatsoever to the creating net-

work namespace, only supporting internal communication. To add a link, one can create

a virtual Ethernet pair with one adapter in each namespace (Listing 3.1). Alternatively,

one can create a Wireguard adapter with sending and receiving sockets in one namespace

and the VPN adapter in another [7, §7.3]. These methods allow for very high levels of

separation while still maintaining access to the primary resource - the Internet or wider

network. Further, this design places the management of how connected a namespace

is to the parent in user-space. This is a significant difference compared to some of the

namespaces discussed later in this chapter.

Network namespaces are also the first mentioned to control access to procfs. /proc

holds a pseudo-filesystem which controls access to many of the kernel data structures

that aren’t accessed with system calls. Achieving the intended behaviour here requires

18



#
#
# ip link add veth0 type veth \

peer veth1
# ip link set veth1 netns test
# ip addr add 192.168.0.1/24 dev veth0
# ip link set up dev veth0
# ping -c 1 192.168.0.2
PING 192.168.0.2 (192.168.0.2) 56(...
64 bytes from 192.168.0.2: icmp_se...

# unshare -n
# ip netns attach test ££
#
#
#
# ip addr add 192.168.0.2/24 dev veth1
# ip link set up dev veth1
# ping -c 1 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(...
64 bytes from 192.168.0.1: icmp_se...

Listing 3.1: Parallel shell sessions showing the creation of a virtual Ethernet pair be-
tween the root network namespace and a newly created and completely empty network
namespace.

remounting /proc, which must be done carefully so as not to overwrite it for other

processes. This is discussed in more detail in Section 3.5.

Network namespaces have significantly more to isolate than the namespaces mentioned

thus far. We see with CVE-2009-1360 that this hasn’t been bug free, though isolation

issues are rare. That particular vulnerability references a user triggering a kernel null-

pointer dereference via passing vectors of IPv6 packets. However, the ability to revoke

Internet and network access could have prevented many flaws in the time since. Of recent

note is CVE-2021-44228, a remote code execution bug in a very popular Java logging

library. Empty network namespaces for applications which don’t require networking pro-

tect very well against remote code execution, as remote access will commonly be via the

Internet.

3.5 PID namespaces

PID namespaces create a mapping from the process IDs inside the namespace to process

IDs in the parent namespace. This continues until processes reach the top-level, named

init, PID namespace. This isolation behaviour is different to that of the namespaces

discussed thus far, as each process within the namespace represents a process in the

parent namespace too, albeit with different identifiers.

As with network namespaces, PID namespaces have a significant effect on /proc. Fur-

ther, they cause some unusual behaviour regarding the PID 1 (init) process in the new

namespace. These behaviours are shown in Listing 3.2. Firstly, an unshare(CLONE PID)

call followed immediately by an exec(2) does not create a working shell. This is be-

cause the first process created in the new namespace is given PID 1 and acts as an init

process. That is, whichever process the shell spawns first becomes the init process of the

namespace, and when that process dies, the namespace can no longer create new pro-

cesses. This behaviour is avoided by either calling unshare(2) followed by fork(2),

or utilising clone(2), both of which ensure that the correct process is created first in

the new namespace. The unshare(1) binary provides a fork flag to solve this, while the

19



£ unshare --pid
-bash: fork: Cannot allocate memory
# (new shell in new pid namespace)
# ps ax | tail -n 3
-bash: fork: Cannot allocate memory

£ unshare --fork --pid
# (new shell in new pid namespace)
# ps ax | tail -n 3
2645 ? I 0:00 [kworker/...]
2689 pts/1 R+ 0:00 ps ax
2690 pts/1 S+ 0:00 tail -n 2

£ unshare --fork --mount-proc --pid
# (new shell in new pid namespace)
# ps ax | tail -n 3
1 pts/1 S 0:00 -bash

15 pts/1 R+ 0:00 ps ax
16 pts/1 S+ 0:00 tail -n 3

Listing 3.2: Unshare behaviour with pid namespaces, with and without forking and re-
mounting proc. Spawning a process without explicitly forking creates a broken shell.
Forking creates a shell that works, but the PID namespace appears unchanged to pro-
cesses that inspect it. Remounting proc and forking provides a working shell in which
processes see the new pid namespace.

implementation of the void orchestrator uses clone(2) which combines the two into a

single system call.

Secondly, we see that even in a shell that appears to be working correctly, processes from

outside of the new PID namespace are visible. This is because the mount of /proc visible

to the process in the new PID namespace is the same as the parent process. This is solved

by remounting /proc, available to unshare(3) with the ---mount-proc flag. Care

must be taken that this mount is completed in a new mount namespace, or else processes

outside of the PID namespace will be affected. The void orchestrator again avoids this

by voiding the mount namespace entirely, meaning that any access to procfs must be

either freshly mounted or bound to outside the namespace intentionally. Remounting a

fresh procfs is unfortunately not trivial on most systems, and will be discussed with

user namespaces (§3.7).

PID namespaces enable something completely new in Linux: PID 1 processes that may

terminate without a shutdown. This raises issues with cleanup, such as CVE-2019-20794

where FUSE filesystems aren’t correctly cleaned up on PID namespace exit. Vulnerabili-

ties that PID protects from are quite hard to find, but a good example is CVE-2012-0056.

A bug existed where a setuid binary could be coerced into writing to memory of arbi-

trary processes. This bug is avoided if one can’t see the processes in their /proc because

of PID namespaces.
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3.6 Mount namespaces

One of the defining philosophies of Unix is everything’s a file. This explains why mount

namespaces, the namespaces which control the single file hierarchy, are the most complex.

This section presents a case study of the implementation of voiding the most difficult

namespace and an analysis of why things were so much more difficult to implement than

with others. We first look at the inheritance behaviour, and the link maintained between a

freshly created namespace and its parent (§3.6.1). Secondly, I present shared subtrees and

the reasoning behind them (§3.6.2), before finishing with a discussion of lazy unmounting

in Linux and the weakness of the user-space utilities (§3.6.3). This culminates in a names-

pace that is successfully voided, but presents a huge burden to user-space programmers

attempting to work with these namespaces in their own projects.

As everything’s a file, it follows that a correctly isolated mount namespace would protect

against a multitude of filesystem bugs. Commonly the protection is against incorrectly

set DAC, where a file may have permissions 0644 (guest read) while containing private

API keys (CVE-2021-23021). The mount namespace, given its maturity, has few bugs of

its own.

3.6.1 Filesystem inheritance

Mount namespaces, rather than creating a new and empty namespace, create a copy of the

parent namespace in an inherited fashion. That is, after creating a new mount namespace,

the mount hierarchy appears the same as before. This is shown in Listing 3.3, where the

file /etc/passwd is shown before and after an unshare, revealing the same content.

This is in contrast to network namespaces, where creating a new network namespace

creates a process with no ability to interact with the outside network, and no immediate

relation to the parent network namespace. To interact with alternate namespaces, one

must explicitly create a connection between the two, or move a physical adapter into the

new (empty) namespace.

3.6.2 Shared subtrees

Shared subtrees [25] were introduced to provide a consistent view of the unified hierarchy

between namespaces. Consider the example in Listing 3.4. unshare(1) creates a non-

shared tree, where although /mnt/cdrom from the parent namespace has been bind

mounted in the new namespace, the content of /mnt/cdrom is not the same. This is

because the filesystem newly mounted on /mnt/cdrom is unavailable in the separate

mount namespace. To combat this, shared subtrees were introduced. That is, as long as

/mnt/cdrom resides on a shared subtree, the newly mounted filesystem will be available

to a bind of /mnt/cdrom in another namespace. systemd made the choice to mount

/ as a shared subtree [13]:
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int main() {
int fd;

if ((fd = open("/etc/passwd", O_RDONLY)) < 0)
perror("open");

print_file(fd);
if (close(fd))

perror("close");

if (unshare(CLONE_NEWNS))
perror("unshare");

printf("----- unshared -----\n");

if ((fd = open("/etc/passwd", O_RDONLY)) < 0)
perror("open");

print_file(fd);
if (close(fd))

perror("close");
}

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
...
----- unshared -----
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
...

Listing 3.3: Reading the same file before and after unsharing the mount namespace demon-
strates no observable change in behaviour, showing that more work must be done to create
an empty namespace.

# unshare -m
# mount_container_root /tmp/a
# mount --bind \

/mnt/cdrom /tmp/a/mnt/cdrom
# pivot_root /tmp/a /tmp/a/oldroot
# umount /tmp/a/oldroot
#
# ls /mnt/cdrom

#
#
#
#
#
#
# mount /dev/sr0 /mnt/cdrom
# ls /mnt/cdrom
file_1 file_2

Listing 3.4: Parallel shell sessions showing highly separated behaviour without shared
subtrees between mount namespaces. A folder in the parent namespace that is bound
may still show different results in each namespace if the mounts have changed.
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“Notwithstanding the fact that the default propagation type for new mount is in many

cases MS PRIVATE, MS SHARED is typically more useful. For this reason, systemd(1)

automatically remounts all mounts as MS SHARED on system startup. Thus, on most

modern systems, the default propagation type is in practice MS SHARED.”

Thus when creating a new namespace, mounts and unmounts are propagated by default.

More specifically, it means that mounts and unmounts are propagated both from the par-

ent namespace to the child, and from the child namespace to the parent. If a mount is un-

mounted in the new namespace, it is also unmounted in the parent. This can be highly con-

fusing behaviour, as it provides minimal isolation by default. unshare(1) considers this

behaviour inconsistent with the goals of unsharing - it immediately calls mount("none",

"/", NULL, MS REC|MS PRIVATE, NULL) after unshare(CLONE NEWNS), detach-

ing the newly unshared tree. The reasoning for enabling MS SHARED by default is that

containers created should not present the behaviour given in Listing 3.4, and this be-

haviour is unavoidable unless the parent mounts are shared, while it is possible to disable

the behaviour where necessary.

While some other namespaces are inherited, they do not present the same challenge as

mount namespaces. With UTS namespaces, it is trivial to set the hostname of the machine

to a constant - removing any relation to the parent namespace and to the outside machine.

Mount namespaces instead maintain a shared pointer with most filesystems, more akin

to not creating a new namespace than an inherited namespace.

3.6.3 Lazy unmounting

The final interesting behaviour comes with unmounting the old root filesystem. Although

this may initially seem isolated to void processes, it affects containers too. Consider again

the container created in Listing 3.4 - the existing root must be unmounted after pivoting,

else the container remains fully connected to the parent root.

File descriptors intentionally ignore namespace boundaries namespaces [4], working the

same with both mount and network namespaces. Consider the example in Listing 3.5,

which shows a short C program and the result of running it. It is seen that the /

mount is busy when attempting the unmount. Given that the process was created in the

parent namespace, the behaviour of file descriptors would suggest that the process would

maintain a link to the parent namespace for its own memory mapped regions. However,

the fact that the otherwise empty namespace has a busy mount demonstrates that this is

not the case.

Lazy unmounting or MNT DETACH exists for situations where a busy mount still needs to

be unmounted. Supplying the MNT DETACH flag to umount2(2) causes the mount to

be immediately detached from the unified hierarchy, while remaining mounted internally

until the last user has finished with it. Whilst this initially seems like a good solution, this
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int main() {
if (unshare(CLONE_NEWNS))

perror("unshare");
if (mount("none", "/", NULL, MS_REC|MS_PRIVATE, NULL))

perror("mount");
if (umount("/"))

perror("umount");
}

umount: Device or resource busy

Listing 3.5: Attempting to unmount the private root directory after an unshare results
in an error that the resource is busy when no files have been opened on it in the new
namespace.

#
#
# unshare --propagation unchanged -m
# umount -l /
#
#
#

# cat /proc/mounts | grep udev
udev /dev devtmpfs rw,nosuid,relat...
#
#
# cat /proc/mounts | grep udev
cat: /proc/mounts: No such file or
directory

Listing 3.6: Parallel shell sessions demonstrating the behaviour in the parent namespace
when attempting to lazily unmount the root filesystem from an unshared shell with a
shared mount. The mount of procfs in the parent is lost even though the unmount was
performed in a different namespace.

system call is incredibly dangerous when combined with shared subtrees. This behaviour

is shown in Listing 3.6, where a lazy (and hence recursive) unmount is combined with a

shared subtree to disastrous effect.

This behaviour raises questions about why a shared subtree, which exists as a reference

counted object, would need to be detached recursively - decreasing the reference count

to the shared subtree itself would seem sufficient. The inconsistency is best explained

by looking at the development timeline for the three features here: mount namespaces,

shared subtrees, and recursive lazy unmounts. When lazy unmounting was added, in

September 2001, the author said the following [29]:

“There are only two things to take care of - a) if we detach a parent we should do it for all

children b) we should not mount anything on ”floating” vfsmounts. Both are obviously

staisfied (sic) for current code (presence of children means that vfsmount is busy and we

can’t mount on something that doesn’t exist).”

This logic held even in the presence of namespaces, with the initial patchset in February

2001 [30], as mounts were not initially shared but duplicated between namespaces. How-

ever, when shared subtrees were added in January 2005 [31], this logic stopped holding.

When setting up a container environment, pivot root(2) replaces the old root with a

new root for the container. Only then may the old root may be unmounted. Oftentimes

the solution is to exec a binary in the new root first, meaning that the old root is no
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longer in use and may be unmounted. This works, as old root is only a reference in

this namespace, and hence may be unmounted with children - the vfsmount in this

namespace is not busy, contradicting an assertion in the quotation.

To continue running the existing binary one must unmount lazily. However, the kernel

only exposes a recursive lazy unmount. With shared subtrees, this results in destroying the

parent tree. While this is avoidable by removing the shared propagation from the subtree

before unmounting, the choice to have MNT DETACH aggressively cross shared subtrees

can be highly confusing, and perhaps undesired behaviour in a world with shared subtrees

by default.

Void processes mount an empty tmpfs file system in a new namespace, which doesn’t

propagate to the parent, and use the pivot root(8) command to make this the new

root. By pivoting to the tmpfs, the old root exists as the only reference in the otherwise

empty tmpfs. Finally, after ensuring the old root is set to MNT PRIVATE to avoid

propagation, the old root can be lazily detached. This allows the binary from the parent

namespace to continue running correctly. Any new processes only have access to the

materials in the empty tmpfs.

3.7 User namespaces

User namespaces provide isolation of security credentials between processes. They isolate

uids, gids, the root directory, keys and capabilities. Rather than the shim being a setuid

or CAP SYS ADMIN binary, it can instead operate with ambient authority by utilising

user namespaces - vastly simplifying the logic for opening file descriptors to pass child

processes, as the shim itself is operating with correctly limited authority.

Similarly to many other namespaces, user namespaces suffer from needing to limit their

isolation. For a user namespace to be useful, some relation needs to exist between pro-

cesses in the user namespace and objects outside. That is, if a process in a user namespace

shares a filesystem with a process in the parent namespace, there should be a way to share

credentials. To achieve this with user namespaces a mapping between users in the names-

pace and users outside exists. The most common use-case is to map root in the user

namespace to the creating user outside, meaning that a process with full privileges in the

namespace will be constrained to the creating user’s authority.

To create an effective void process content must be written to the files /proc/[pid]/uid map

and /proc/[pid]/gid map. In the case of the shim uid 0 and gid 0 are mapped to

the creating user. This is done first such that the remaining stages in creating a void

process can have root capabilities within the user namespace - this is not possible prior

to writing to these files. Otherwise, CLONE NEWUSER combines effectively with other

namespace flags, ensuring that the user namespace is created first. This enables the other

namespaces to be created without additional authority.
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# docker run --rm ubuntu cat /proc/mounts | grep proc
proc /proc proc rw,nosuid,nodev,noexec,relatime 0 0
proc /proc/bus proc ro,nosuid,nodev,noexec,relatime 0 0
proc /proc/fs proc ro,nosuid,nodev,noexec,relatime 0 0
proc /proc/irq proc ro,nosuid,nodev,noexec,relatime 0 0
proc /proc/sys proc ro,nosuid,nodev,noexec,relatime 0 0
proc /proc/sysrq-trigger proc ro,nosuid,nodev,noexec,relatime 0 0
tmpfs /proc/asound tmpfs ro,relatime 0 0
tmpfs /proc/acpi tmpfs ro,relatime 0 0
tmpfs /proc/kcore tmpfs rw,nosuid,size=65536k,mode=755 0 0
tmpfs /proc/keys tmpfs rw,nosuid,size=65536k,mode=755 0 0
tmpfs /proc/timer_list tmpfs rw,nosuid,size=65536k,mode=755 0 0
tmpfs /proc/scsi tmpfs ro,relatime 0 0

Listing 3.7: The mounts at and below /proc in a Ubuntu Docker container demonstrate
the many additional mounts on top of procfs.

User namespaces again interact with procfs, which brings up an interesting limitation

to the capabilities available in user namespaces. On most systems, procfs has a variety

of mounts over it. This might be to interact with a hypervisor such as Xen, to support

binfmt misc for running special applications, or Docker protecting the host from con-

tainer mishaps. The series of mounts in a Docker container on one of my machines are

shown in Listing 3.7. The objects mounted over include /proc/kcore, which presents

direct access to all allocatable memory. Linux protects these mounts by enforcing that

procfs with mounts below it can only be mounted in a new place if the user has root

privilege in the init namespace. One can instead bind /proc to the parent namespace

before remounting it, which is permitted with mounts below. Further, by running the

void process with constrained authority (limited to that of the calling user even as root),

the dangerous files in /proc are protected using discretionary access control. This avoids

the requirement of adding extra mounts in the void orchestrator.

In the case of Docker, with CVE-2021-21284, a remapped user may be able to alter the

initial source of the mappings, causing them to be overridden and gaining root access, a

bug caused by incorrect usage of user namespaces. In contrast with containerd, with CVE-

2021-23021, an always root containerd daemon mounts files that shouldn’t be accessible

with DAC due to a logic error - mapped user namespaces preserve DAC, preventing such

errors.

3.8 Control group namespaces

Control group (cgroup) namespaces provide limited isolation of the cgroup hierarchy be-

tween processes. Rather than showing the full cgroups hierarchy, they show only the

part of the hierarchy that the process was in on creation of the new cgroup namespace.

Correctly creating a void process is hence as follows:

1. Create an empty cgroup leaf.
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2. Move the new process to that leaf.

3. Unshare the cgroup namespace.

By following this sequence of calls, the process in the void would only see the leaf which

contains itself and nothing else. Running the shim with ambient authority here presents

an issue as the cgroup hierarchy relies on discretionary access control. In order to move the

process into a leaf the shim must have sufficient authority to modify the cgroup hierarchy.

Due to this behaviour, and hence the unreliability of correctly voiding cgroup processes,

the void orchestrator performs only the third step - unsharing the cgroup namespace.

This makes cgroups the only namespace which can’t be voided with ambient authority,

advocating a need for kernel changes.

There are two problems when working with cgroups namespaces: needing sufficient dis-

cretionary access control, and leaving the control of individual application processes in a

global namespace. I posture an alternative cgroup namespace: a process in a new cgroups

namespace creates a detached hierarchy with itself as a leaf of the root and full permis-

sions in the user namespace that created it. The main cgroups hierarchy sees a single

application to control, while the application itself would have full access over sharing its

externally limited resources. This would make the delegation of resources explicit in the

design - the init namespace could be handled by systemd, while the /docker names-

pace could be managed internally by docker. This would allow systemd to move the

/docker namespace around as required, with isolation from the choices made internally.

3.9 Creation cost

As shown, creating a void requires creating 7 distinct namespaces for isolation. There

are two options to create these namespaces: clone(2) or unshare(2). As the void

orchestrator uses clone(2) we evaluate the performance of this tool.

These tests were run on my development machine, using Linux 5.15.0-33-generic on

Ubuntu 22.04 LTS. It is a Xen based virtual machine, hence absolute results are less

important than trends. The test process calls clone(2) with the requisite flags, then

waits for the child process to exit. The child process exits immediately after returning

from clone. The time is taken from before the clone(2) call and after the wait(2) call

returns using the high precision CLOCK MONOTONIC. This code is compiled into a tight

C for loop, which executes 1250 times. The first 250 entries of each run are discarded.

Prior to running the variety of clone tests, 12500 clone calls are made in an attempt to

warm up the system.

Figure 3.1 compares the time of clone(2) calls with a single namespace creation flag,

and a clone(2) call that creates no namespaces. Ignoring the anomaly that a clone call

which creates a namespace is cheaper than one which doesn’t, there is a clear difference
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Figure 3.1: Performance of making the clone(2) system call with varying namespace
creation flags. The test is run in a tight compiled C loop with high precision timings
taken before and after each new process is cloned and waited for. clone(2) presents
very noisy results on a system with background activity.

shown in the creation time of network namespaces compared to user. Further, we see that

creating a network namespace is approximately four times slower than not creating any.

As void processes must create multiple namespaces to effectively isolate processes, creating

multiple namespaces is shown in Figure 3.2. Here the divide between the three slowest

namespaces in Figure 3.1 is exaggerated, showing a significant divide between the quick

four namespaces and the slow final three.

3.10 Summary

In this chapter I discussed the 8 namespaces available in Linux 5.15: what each namespace

protects against, how to completely empty each created namespace, and the constraints

in doing so. For cgroup and mount namespaces, alternative designs that increase the

usability of the namespaces were discussed.

Emptying namespaces has been motivated by protection from vulnerabilities. Facilities

to re-expose some of the system must now be introduced to build useful applications. The

methods for reintroducing parts of the system are given in Chapter 4, before demonstrat-

ing how to build applications in Chapter 5.
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Figure 3.2: Performance of making the clone(2) system call with increasing amounts of
namespace creation flags. The effects of Figure 3.1 are amplified when creating multiple
namespaces in a single call this frequently. There is a clear divide between the time taken
for user, pid, uts, and cgroup namespaces and ipc, ns and net namespaces.
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Chapter 4

Filling the Void

Now that a completely empty set of namespaces are available for a void process, the

ability to reinsert specific privileges must be added to support non-trivial applications.

This is achieved using a mixture of file-descriptor capabilities (§2.3) and adding elements

to the empty namespaces (§2.5). Capabilities allow for very explicit privilege passing

where suitable, while adding elements to namespaces supports more of Linux’s modern

features.

4.1 Mount namespace

There are two options to provide access to files and directories in the void. For a single

file, an opened file descriptor can be offered. Consider the TLS broker of a TLS server

with a persistent certificate and keyfile. Only these files are required to correctly run the

application - no view of a filesystem is necessary. Providing an already opened file descrip-

tor gives the process a capability to those files while requiring no concept of a filesystem,

allowing that to remain a complete void. This is possible because of the semantics of file

descriptor passing across namespaces - the file descriptor remains a capability, regardless

of moving into a namespace without the file.

Alternatively, files and directories can be mounted in the void process’s namespace. This

supports three things which the capabilities do not: directories, dynamic linking, and ex-

isting applications. Firstly, the existing openat(2) and resultant directory file descrip-

tors are not suitable as capabilities - they only retain the path of their directory internally.

This means that a process with a directory file descriptor in another namespace cannot

use it to access files outside of the namespace, removing all utility as capabilities in the

void. Secondly, dynamic linking is best served by binding files, as these read only copies

and the trusted binaries ensure that only the required libraries can be linked against.

Finally, support for individual required files can be added by using file descriptors, but

many applications will not trivially support it. Binding files allows for some backwards
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compatibility with applications that are more difficult to adapt.

4.2 Network namespace

Reintroducing networking to a void process follows a similar capability-based paradigm to

reintroducing files. Rather than providing the full Linux networking subsystem to a void

process, it is instead handed a file descriptor that already has the requisite networking

permissions. A capability for an listening networking socket can be requested statically

in the application’s specification. This socket remains open and allows the application to

continuously accept requests, generating the appropriate socket for each request within

the application itself. These request capabilities can be dealt with in the same void process

or handed back to the shim to be distributed to another void process.

Outbound networking is more difficult to re-add to a void process than inbound network-

ing. Containerisation solutions such as Docker use NAT with bridged adapters by default.

That is, the container is provided an internal IP address that allows access to all networks

via the host. Virtual machine solutions take a similar approach, creating bridged Ethernet

adapters on the outside network or on a private NAT. Each of these approaches give the

container/machine the appearance of unbounded outbound access, relying on firewalls to

limit this afterwards. This does not fit well with the ethos of creating a void process -

minimum privilege by default. An ideal solution would provide precise network access to

the void, rather than adding all access and restricting it in post. This is achieved with

inbound sockets by providing the precise and already connected socket to an otherwise

empty network namespace, which does not support creating exposed inbound sockets of

its own.

Consideration is given to providing outbound access with statically created and passed

sockets, the same as inbound access - a socket to a database could be specified statically

in the specification. The downside of this approach is that the socket lifecycle is still

handled by the kernel. While this could work well with UDP sockets, TCP sockets can

fail because the remote was closed or a break in the path caused a timeout to be hit.

Given that statically giving sockets is infeasible and adding a firewall does not fit well

with creating a void, I sought an alternative API. pledge(2) is a system call from

OpenBSD which restricts future system calls to an approved set [16]. This seems like

a good fit, though operating outside of the operating system makes the implementation

very different. Acceptable sockets are specified in the application specification, then an

interaction socket is provided to request various pre-approved sockets from the shim. This

allows limited access to the host network, approved or denied at request time instead of

by a firewall. That is, access to a precisely configured socket can be injected to the void,

with a capability to request such sockets and a capability given for each socket requested.
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£ ls -ld repos owned_by_root
-rw-r--r-- 1 root root 0 May 7 22:13 owned_by_root
drwxrwxr-x 7 alice alice 4096 Feb 27 17:52 repos

£ unshare -U --map-root

# ls -ld repos owned_by_root
-rw-r--r-- 1 nobody nogroup 0 May 7 22:13 owned_by_root
drwxrwxr-x 7 root root 4096 Feb 27 17:52 repos

Listing 4.1: A directory listing before and after entering a user namespace with mapped
root demonstrates filesystem objects owned by the mapped (calling) user shown as being
owned by root and any other filesystem objects shown as being owned by nobody.

4.3 User namespace

Filling a user namespace is a slightly odd concept compared to the namespaces already

discussed in this section. A user namespace comes with no implicit mapping of users

whatsoever (§3.7). To enable applications to be run with bounded authority, a single

mapping is added by the void orchestrator of root in the child user namespace to the

launching UID in the parent namespace. This means that the user with highest privilege

in the container, root, will be limited to the access of the launching user. The behaviour

of mapping root to the calling user is shown with the unshare(1) command in Listing

4.1, where a directory owned by the calling user, alice, appears to be owned by root

in the new namespace. A file owned by root in the parent namespace appears to be

owned by nobody in the child namespace, as no mapping exists for that file’s user.

The way user namespaces are currently used creates a binary system: either a file ap-

pears as owned by root if owned by the calling user, or appears as owned by nobody if

not. One questions whether more users could be mapped in, but this presents additional

difficulties. Firstly, setgroups(2) system call must be denied to achieve correct be-

haviour in the child namespace. This is because the root user in the child namespace

has full capabilities, which include CAP SETGID. This means that the user in the names-

pace can drop their groups, potentially allowing access to materials which the creating

user did not (consider a file with permissions 0707). This limits the utility of switching

user in the child namespace, as the groups must remain the same. Secondly, mapping to

users and groups other than oneself requires CAP SETUID or CAP SETGID in the parent

namespace. Avoiding this is well advised to reduce the ambient authority of the shim.

Voiding the user namespace initially provides the ability to create other namespaces with

ambient authority, and hides the details of the void process’s ambient permissions from

inside. Although this creates a binary system of users which may at first seem limiting,

applying the context of void processes demonstrates that it is not. Linux itself may utilise

users, groups and capabilities for process limits, but void processes only provide minimum

privilege by default. That is, if a process should not have access to a file owned by the

same user, it is simply not made available. Running only as root within the void process
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is therefore not a problem - multiple users is a feature of Linux which doesn’t assist void

processes in providing minimum privilege, so is absent.

4.4 Remaining namespaces

4.4.1 UTS namespace

UTS namespaces are easily voided by setting the two controlled strings to a static string.

However, if one wishes for them to hold specific values, they can be set in one of two ways:

either calling sethostname(2) or setdomainname(2) from within the void process,

or by providing static values within the void process’s specification.

4.4.2 IPC namespace

Filling IPC namespaces is also not possible in this context, as IPC namespaces are created

empty (§3.1). IPC objects exist in one and only one IPC namespace, due to sharing what

they expect to be a global namespace of keys. This means that existing IPC objects can-

not be mapped into the void process’s namespace. However, the process within the IPC

namespace can use IPC objects, for example between threads. This is potentially inad-

visable, because different void processes would provide stronger isolation than IPC within

a single void process. Alternative IPC methods are available which use the filesystem

namespace and are better shared between void processes.

4.4.3 PID namespace

A created PID namespace exists by itself, with no concept of mapping in PIDs from the

parent namespace. The first process created in the namespace becomes PID 1, and after

that other processes can be spawned from within. As such there is no need to fill PID

namespaces, instead applications can be restructured to not expect seeing other process’s

IDs.

4.4.4 Control group namespace

cgroup namespaces present some very interesting behaviour in this regard. What appears

to be the root in the new cgroup namespace is in fact a subtree of the hierarchy in the

parent. This again provides a quite strange concept of filling - elements of the tree cannot

be cloned to appear in two places, by design. To provide fuller interaction with the

cgroups system, one can instead bind whichever subtree they wish to act on from the

parent mount namespace to the child mount namespace. This provides the control of any

section of the cgroups subtree seen fit, and is unaffected by the cgroups namespace of

the child. That is, the cgroups namespace is used only to provide a void, and the mount

namespace can be used to operate on cgroups.
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4.5 System design

At this point in the thesis the theory of creating a void process (§3) and the theory of

filling a void with enough privilege to do useful work have been laid out. Now I present

some more detail on the system that combines these together in a useful aid to privilege

separation.

The central contribution of void processes is the void orchestrator, a shim that uses an

application binary and a textual specification to set up the multiple processes required

for privilege separation. The specification describes a series of entrypoints, each of which

contain three things: a trigger to create the process, a list of arguments, and extra elements

for the environment. Example specifications are included in Chapter 5.

There are two types of entrypoints: those spawned statically at startup, and those

spawned dynamically when triggered by an event. This event, as shown in the TLS

server example (§5.2), is most commonly sending one or more file descriptors from a dif-

ferent void process. File descriptors are the primary method of communication as they

are not impacted by namespaces in any way - performance or isolation.

When a void process is spawned, the void orchestrator uses the specification to pass

the pre-specified privilege into the void. A concept of spawners is also provided, which

allows a void process to trigger the creation of another void process. Spawners are an

additional process, existing in a void, which create further voids on demand. This allows

for separation of privilege by handing work off to a differently privileged void when needed.

The void orchestrator handles the management of the void processes which make up an

application, reducing the burden on the application programmer. A central knowledge

bank for preparing a void serves as a single point to upgrade when new ambient authority

is added and needs to be removed.

4.6 Summary

Included in the goal of minimising privilege is providing new APIs to support this. A

mixed solution of capabilities, capability creating capabilities, and file system bind mounts

is used to re-add privilege where necessary. Interface thinning is used to ban APIs which

do not well suit the model. Now that void processes with useful privilege can be created,

and software exists to orchestrate applications consisting of void processes, Chapter 5

presents two example applications which utilise void processes for privilege separation.
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Chapter 5

Building Applications

This section discusses the process of creating applications which utilise void processes. An

application which requires only basic privilege is demonstrated (§5.1), showing how to put

together a simple application that takes advantage of void processes to start with minimum

privilege. We conclude with a basic HTTP file server with TLS support, designed and

built from the ground up for void processes (§5.2).

5.1 Fibonacci

To begin displaying the power of the void orchestrator system we will develop an ap-

plication that requires very modest privilege. The application and its fixed output are

shown, unmodified, in Listing 5.1. It is written in Rust, my language of choice, but there

is no such requirement - an equivalent program would look very similar in C. The limited

code of this example makes the privilege requirements exceptionally clear. Computing

fib requires no privilege at all, operating purely on numbers on the stack. Once the val-

ues are computed they are printed using the println! macro, which prints to stdout.

Therefore the only privilege this application requires at runtime is access to stdout.

To run this application as a void process we require a specification (§4.5) to detail how

the processes of the application should be set up. The specification for the Fibonacci ap-

plication is given in Listing 5.2. When specifying an entrypoint for an application every

privilege needed must be specified explicitly. In this case, as discussed, the application

only requires special access to stdout. This is specified in the environment section of the

entrypoint. We also see in the specification a variety of libraries made available, required

for the application to successfully dynamically link. This information is decidable from

the binary, but implementing that is left for future work (§6.1.2). We also see that no

arguments are specified, although they are a part of the specification. No specified argu-

ments defaults to no arguments, as the void orchestrator minimises privilege by default.

The application void process therefore receives no arguments - including arg0 as the
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fn main() {
println!("fib(1) = {}", fib(1));
println!("fib(7) = {}", fib(7));
println!("fib(19) = {}", fib(19));

}

fn fib(i: u64) -> u64 {
let (mut a, mut b) = (0, 1);
for _ in 0..i {

(a, b) = (b, a + b);
}
a

}

fib(1) = 1
fib(7) = 13
fib(19) = 4181

Listing 5.1: A basic Fibonacci application. The application computes elements of the
Fibonacci sequence on static indices and does not process any user input.

binary name.

More of the advanced features of the system will be shown in the second example, but this

is enough to get a basic application up and running. We can see that the Rust application

looks exactly like it would without the shim. The application is also fully deprivileged. Of

course, for an application as small as this example, we can verify by hand that the program

has no foul effects. We can imagine a trivial extension that would make this program more

dangerous: using a user argument (a privilege the program does not currently have) to

take a value on which to execute fib. One way this user input could cause damage is

with flawed usage of a logging library. The recent widespread example is Log4j2 with

CVE-2021-44228, enabling an attacker with string control to execute arbitrary code from

the Internet. A void process with privilege of only arguments and stdout would protect

well against this vulnerability, as not only is there no Internet access to pull remote code,

but there is nothing to take advantage of in the process even if remote code execution is

gained.

5.1.1 Performance

In Section 3.9 testing showed that creating all of the namespaces needed for a void can

have extremely high overhead compared to creating a simple new process. Now that a

basic application exists to evaluate this on, the latency of the final shim executing an

application can be tested.

Figure 5.1 shows the difference in spawning an application directly and spawning it with

the shim (the Fibonacci application is compatible with both). A C application with a

tight for loop is compiled, which calls vfork(2) followed by wait(2), again using high

precision CLOCK MONOTONIC timings. The child process calls execv(2) immediately,

in the direct case with the Fibonacci binary itself, and in the shim case with the shim
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{"entrypoints": { "fib": { "environment": [
"Stdout",
{

"Filesystem": {
"host_path": "/lib/x86_64-linux-gnu/libgcc_s.so.1",
"environment_path": "/lib/libgcc_s.so.1"

}
},
{

"Filesystem": {
"host_path": "/lib/x86_64-linux-gnu/libc.so.6",
"environment_path": "/lib/libc.so.6"

}
},
{

"Filesystem": {
"host_path": "/lib64/ld-linux-x86-64.so.2",
"environment_path": "/lib64/ld-linux-x86-64.so.2"

}
}

]}}}

Listing 5.2: The specification for the void orchestrator to run the application shown in
Listing 5.1. A single entrypoint is provided with a minimal environment, including only
the content to dynamically link the binary and standard output.

Figure 5.1: A box plot comparing the performance of the Fibonacci example (§5.1 under
the shim and called directly. The median time to run under the shim is approximately
800% the time without. The inter-quartile range and range of results is also much larger.

with the Fibonacci specification and binary as arguments.

The results demonstrate both significantly higher median latency and significantly higher

variance in the results. The machine is the same as that mentioned in Section 3.9. Al-

though my virtual machine was not particularly busy at the time of testing, it appeared

that the underlying host was, affecting times due to virtual machine context switching

within the hypervisor. The underlying trend of a significant overhead remained through-

out testing. This thesis focused on user-space, but future work in kernel-space should be

able to reduce this overhead (§6.1.1).

5.2 TLS server

Rather than presenting the complete applications as shown in the previous two sections,

the TLS server presents instead a case study on designing applications from the ground

up to run as void processes. The thought process behind data flow design and taking

advantage of the more advanced void orchestrator features is given. This results in the
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Ambient Authority

Void Orchestrator

TLS Handler Spawner HTTP Handler Spawner

Connection Listener TLS Handler HTTP Handler

Spawners

Figure 5.2: The final process design for a TLS server running under the void orchestrator.
The figure is split into processes running void orchestrator code and processes running
user code. Arrows represent a passing of privilege from one process to another.

{"entrypoints": { "tcp_listener": {
"args": [

{ "TcpListener": { "addr": "0.0.0.0:8443" } }
]

}}}

Listing 5.3: The void orchestrator specification for the TCP listener endpoint of the TLS
application. The privilege to use a TCP listener is requested as an argument. Dynamic
linking binds are omitted for brevity.

process separation presented in Figure 5.2. First we must accept TCP requests from the

end user (§5.2.1). Then, to be able to check that all is working so far, we respond to these

requests (§5.2.2). Finally, we add an encryption layer using TLS (5.2.3). This results in a

functional TLS file server with strong privilege separation, with each stage having exactly

the privilege that it requires.

5.2.1 TCP listener

The special privilege required by a process which accepts TCP connections is a listening

TCP socket. As discussed in Section 4.2, TCP listening sockets are handed already bound

to void processes. This enables a capability model for network access, otherwise restricting

inbound and outbound networking entirely. The specification for this listener is given in

Listing 5.3, where the TCP listener is requested as an argument already bound. No other

permissions are required to accept connections from a TCP listener. Although the code

at each stage is omitted for brevity, the resulting program has to parse the argument back

into an integer and then a TcpStream before looping to receive incoming connections.

When building and debugging software it is often useful to have access to the stdout or

stderr streams, even though they won’t be utilised in production. The void orchestrator

provides useful --stdout and --stderr flags to temporarily privilege an application

for debugging without modifying its specification. Having a process that can accept TCP

streams but no nothing else is of little use, except for a simple hello world example or

echo example. We move on to developing the HTTP handler to see useful output from

the application.
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5.2.2 HTTP handler

When attempting to add the HTTP handler, we immediately require more privilege. As

this is intended to be a file server, we need some files. Although it would be easy to add

files to the existing entrypoint, the principle of least privilege is highly encouraged when

developing a void process. One should always ask whether an entrypoint needs a new

privilege that they are about to add to it, or whether they would be better served with a

new entrypoint.

In this case, we are going to add a new entrypoint for two reasons: multiprocessing

and privilege separation. This allows the TCP listener entrypoint to continue in a tight

loop, accepting requests very quickly and fanning them out to new processes. These

new processes have only their required privileges: the files they wish to serve, and the

TcpStream to serve them over. We take advantage here of another feature of the void

orchestrator, file socket based triggers. These allow a statically defined socket to be

setup which the void orchestrator will listen on and create new void processes on demand.

Further, this ensures isolation between requests, meaning that a single failed request which

causes a process to fail will not affect any others, and a compromised process can’t leak

information about any other requests.

The HTTP handler entrypoint is added to the specification in Listing 5.4. As well as

adding a single extra argument to trigger the HTTP handler, we must also add an en-

trypoint argument to differentiate between the two entrypoints. Much like the usage of

arg0 for symlinked binaries, we utilise arg0 to find which intended use of the binary

is being called (Listing 5.5). Having looked at this specification, we can imagine what

the code for each section would look like. Tight privilege bounds act somewhat like type

signatures in dictating the behaviour of an application. Future work involves taking more

advantage of this link between the two (§6.1.3).

5.2.3 TLS handler

The final stage is to add the TLS handling into the mix. Once again we have the choice

of whether to add this to an existing entrypoint or create a new one. This decision is

very similar to HTTP handling, but perhaps more important. Rather than adding the

www directory that we intend to serve publicly anyway, we are entrusting a process with

the private keys of the TLS certificate, allowing anyone who takes over the process to

impersonate us. This is again an excellent time for more privilege separation, so the TLS

handling will be added as an additional entrypoint.

The resulting specification is given in Listing 5.6. The TLS handler is added in a very

similar manner to the previous HTTP handler. It is triggered by a file socket, but this time

receives another file socket to trigger the next stage. It receives file descriptor capabilities

to each the certificate and private key files, along with the TCP stream. This process
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{"entrypoints": {
"tcp_listener": {

"args": [
"Entrypoint",
{ "FileSocket": { "Tx": "http" } },
{ "TcpListener": { "addr": "0.0.0.0:8443" } }

]
},
"http_handler": {

"trigger": { "FileSocket": "http" },
"args": [ "Entrypoint", "Trigger" ],
"environment": [{ "Filesystem": {

"host_path": "/var/www/html",
"environment_path": "/var/www/html"

}}]
}

}}

Listing 5.4: The void orchestrator specification for the TCP listener endpoint and HTTP
handler endpoint of the TLS application. This extends on Listing 5.3 by adding the
HTTP handler endpoint. A new File Socket is used to link the two entrypoints together.
Dynamic linking binds are omitted for brevity.

fn main() {
match std::env::args().next() {

Some(s) => match s.as_str() {
"connection_listener" => connection_listener_entrypoint(),
"http_handler" => http_handler_entrypoint(),
_ => unimplemented!(),

},
None => unimplemented!(),

}
}

Listing 5.5: The main function for the TLS server. This matches on the entrypoint arg0
to determine which entrypoint the application has been run for.
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{"entrypoints": {
"connection_listener": {

"args": [
"Entrypoint",
{ "FileSocket": { "Tx": "tls" } },
{ "TcpListener": { "addr": "0.0.0.0:8443" } }

]
},
"tls_handler": {

"trigger": { "FileSocket": "tls" },
"args": [

"Entrypoint",
{ "FileSocket": { "Tx": "http" } },
{ "File": "/etc/ssl/certs/example.com.pem" },
{ "File": "/etc/ssl/private/example.com.key" },
"Trigger"

]
},
"http_handler": {

"trigger": { "FileSocket": "http" },
"args": [ "Entrypoint", "Trigger" ],
"environment": [{ "Filesystem": {

"host_path": "/var/www/html",
"environment_path": "/var/www/html"

}}]
}

}}

Listing 5.6: The void orchestrator specification for the final TLS application. This extends
on Listing 5.3 by adding the HTTP handler endpoint. A new File Socket is used to link
the two entrypoints together. Dynamic linking binds are omitted for brevity.

receives nothing but highly restricted capabilities, ensuring that there is very little attack

surface for compromise.

We now have a full specification for a TLS server. In this section I have focused entirely

on building up the specification and not the code behind it. There are two reasons for

this: the code has a lot of boilerplate argument processing, and a variety of code imple-

mentations are available. The boilerplate argument processing could be addressed with

future work using features like proc macros in Rust which dynamically generate code

based on input (§6.1.3). As for varying implementations, I chose to use the static library

rustls to implement my TLS server. There are many excellent alternatives, such as

OpenSSL and LibreSSL, which would work just as well though with different APIs. For

HTTP I use a Rust crate for request parsing, before responding only to GET requests.

The isolation from sensitive material adds a degree of freedom to request handling, as

there is so little which can go wrong. The implementation therefore matters very lit-

tle in this analysis, but is made available at https://github.com/JakeHillion/

void-orchestrator/tree/main/examples/tls/. Instead the focus is on com-

posability and privilege separation, showing the flexibility of the system.
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Figure 5.3: a2bench requests per second results over 10 seconds with 100 simultaneous
requests on varying response sizes. As the response size increases, the gap between the
apache2 TLS web server and the void process TLS web server decreases.

5.2.4 Performance

The performance of the TLS server provides a much more nuanced view than the per-

formance of the trivial Fibonacci example (§5.1.1). I evaluated my void process solution

against apache2, a highly tuned HTTP server. Both used the same self-signed TLS

certificate and were benchmarked with ab, the Apache HTTP server benchmarking tool.

The machine setup remains the same as in Section 3.9. apache2 runs the standard

Ubuntu 22.04 LTS config with the TLS module enabled.

Figure 5.3 shows the number of requests per second achieved over a ten second testing

period, where ab created 100 concurrent connections and was allowed unlimited total

requests. The graph plots the median result and the interquartile range. Figure 5.4

shows the same data, but this time divided by the median result of the apache server’s

benchmark, allowing easier analysis of the relative performance of the two solutions.

The trend of the data is that the void process solution handles large request sizes bet-

ter, while apache2 handles small request sizes significantly better. This relates to the

high cost of process creation (§3.9,§5.1.1) associated with void processes, given that two

processes need be created for each request (a tls handler and a http handler).

However, combined with large response processes (meaning long lived processes) and high

concurrency, the void process server eventually outperforms apache2. This highlights

the effectiveness of using ordinary file descriptors as performance is maintained, even with

maximum privilege separation.
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Figure 5.4: a2bench requests per second results over 10 seconds with 100 simultaneous
requests on varying response sizes. As the response size increases, the gap between the
apache2 TLS web server and the void process TLS web server decreases. Results are
scaled to the apache2 medians, and apache2 is shown with no error as it is always
100% of itself.

5.3 Summary

I’ve demonstrated how void processes can both run a standard process with no privilege

requirements and define a structure for a new application. Explicit definitions of privilege

can make it very clear to the programmer where privilege boundaries are, leading to

effective privilege separation. The performance changes caused by these designs have been

evaluated, where the use of standard file descriptors as capabilities shows that utilising the

void orchestrator can achieve acceptable performance with minimal programming effort.
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Chapter 6

Conclusions

The system built in this project enables running applications with minimal privilege

in a Linux environment in a novel way. Performance is shown to be comparable, and

demonstrates where the existing kernel setup provides inadequate performance for such

applications. Design choices in the user-space kernel APIs for namespaces are discussed

and contextualised, with suggestions offered for alternate designs.

Void processes offer a new paradigm for application development which prioritises minimal

privilege. Applications often need to be completely rewritten in order to take advantage

of improved isolation, rather than being limited by backwards compatibility guarantees.

The system is designed to support effective static analysis on applications, though this

is not implemented at this stage. I present in this work that privilege through explicit

choices is a simpler paradigm for programmers than fighting against the moving target of

Linux ambient privilege.

Finally, void processes provide a seamless experience without making kernel-space changes,

allowing for ease of deployment. It runs on the Linux kernel, a production kernel with

widespread usage. Although the current kernel structure limits the performance of the

work with the namespace creation bottleneck, the feasibility of namespaces for process

isolation is effectively demonstrated in a system that encourages application writers to

develop with privilege separation as a first principle.

6.1 Future Work

6.1.1 Kernel API improvements

The primary future work to increase the utility of void processes is better performance

when creating empty namespaces. Sections 3.9 and 5.1.1 showed that the startup hit

when creating the namespaces for a void is very high. This shows a limitation of the

APIs, as creating a namespace that has no relation to a parent should involve a small
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amount of work. Secondly, an API similar to network namespaces adding paired interfaces

between namespaces should be added for binding in mount namespaces, allowing mount

namespaces to be created completely empty. This would also benefit containers which by

default have no connection to the parent namespace, but need to mount in their own root

filesystem.

6.1.2 Dynamic linking

Dynamic linking works correctly under the shim, however, it currently requires a high

level of manual and static input. If one assumes trust of the binary as well as the specifi-

cation, it is feasible to add a pre-spawning phase which appends read-only libraries to the

specification for each spawned process automatically before creating appropriate voids.

This would allow anything which can link correctly on the host system to link correctly

in void processes with no additional effort.

6.1.3 Building specifications from code

Much of the information given in the specification and the code is shared. For example,

the specification may list the arguments and also imply their type. This means that a

function signature for an entrypoint implies almost all of the specification of an entrypoint,

which would allow effective code generation with some supplementary information. This

would remove many of the boilerplate argument processing lines from the examples and

increase the usability of the system. Combining this with the dynamic linking work

(§6.1.2) would remove a huge amount of the manual effort in creating the specification,

making the system more user friendly.
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