storj/satellite/repair/repairer/segments.go
Márton Elek 70cdca5d3c
satellite: move satellite/nodeselection/uploadselection => satellite/nodeselection
All the files in uploadselection are (in fact) related to generic node selection, and used not only for upload,
but for download, repair, etc...

Change-Id: Ie4098318a6f8f0bbf672d432761e87047d3762ab
2023-07-07 10:32:03 +02:00

856 lines
31 KiB
Go

// Copyright (C) 2019 Storj Labs, Inc.
// See LICENSE for copying information.
package repairer
import (
"context"
"errors"
"fmt"
"io"
"math"
"strings"
"time"
"github.com/zeebo/errs"
"go.uber.org/zap"
"golang.org/x/exp/maps"
"storj.io/common/pb"
"storj.io/common/storj"
"storj.io/common/sync2"
"storj.io/storj/satellite/audit"
"storj.io/storj/satellite/metabase"
"storj.io/storj/satellite/nodeselection"
"storj.io/storj/satellite/orders"
"storj.io/storj/satellite/overlay"
"storj.io/storj/satellite/repair"
"storj.io/storj/satellite/repair/checker"
"storj.io/storj/satellite/repair/queue"
"storj.io/uplink/private/eestream"
"storj.io/uplink/private/piecestore"
)
var (
metainfoGetError = errs.Class("metainfo db get")
metainfoPutError = errs.Class("metainfo db put")
invalidRepairError = errs.Class("invalid repair")
overlayQueryError = errs.Class("overlay query failure")
orderLimitFailureError = errs.Class("order limits failure")
repairReconstructError = errs.Class("repair reconstruction failure")
repairPutError = errs.Class("repair could not store repaired pieces")
// segmentVerificationError is the errs class when the repaired segment can not be verified during repair.
segmentVerificationError = errs.Class("segment verification failed")
// segmentDeletedError is the errs class when the repaired segment was deleted during the repair.
segmentDeletedError = errs.Class("segment deleted during repair")
// segmentModifiedError is the errs class used when a segment has been changed in any way.
segmentModifiedError = errs.Class("segment has been modified")
)
// irreparableError identifies situations where a segment could not be repaired due to reasons
// which are hopefully transient (e.g. too many pieces unavailable). The segment should be added
// to the irreparableDB.
type irreparableError struct {
piecesAvailable int32
piecesRequired int32
}
func (ie *irreparableError) Error() string {
return fmt.Sprintf("%d available pieces < %d required", ie.piecesAvailable, ie.piecesRequired)
}
// PieceFetchResult combines a piece pointer with the error we got when we tried
// to acquire that piece.
type PieceFetchResult struct {
Piece metabase.Piece
Err error
}
// FetchResultReport contains a categorization of a set of pieces based on the results of
// GET operations.
type FetchResultReport struct {
Successful []PieceFetchResult
Failed []PieceFetchResult
Offline []PieceFetchResult
Contained []PieceFetchResult
Unknown []PieceFetchResult
}
// SegmentRepairer for segments.
type SegmentRepairer struct {
log *zap.Logger
statsCollector *statsCollector
metabase *metabase.DB
orders *orders.Service
overlay *overlay.Service
ec *ECRepairer
timeout time.Duration
reporter audit.Reporter
reputationUpdateEnabled bool
doDeclumping bool
doPlacementCheck bool
// multiplierOptimalThreshold is the value that multiplied by the optimal
// threshold results in the maximum limit of number of nodes to upload
// repaired pieces
multiplierOptimalThreshold float64
// repairOverrides is the set of values configured by the checker to override the repair threshold for various RS schemes.
repairOverrides checker.RepairOverridesMap
nowFn func() time.Time
OnTestingCheckSegmentAlteredHook func()
OnTestingPiecesReportHook func(pieces FetchResultReport)
}
// NewSegmentRepairer creates a new instance of SegmentRepairer.
//
// excessPercentageOptimalThreshold is the percentage to apply over the optimal
// threshould to determine the maximum limit of nodes to upload repaired pieces,
// when negative, 0 is applied.
func NewSegmentRepairer(
log *zap.Logger,
metabase *metabase.DB,
orders *orders.Service,
overlay *overlay.Service,
reporter audit.Reporter,
ecRepairer *ECRepairer,
repairOverrides checker.RepairOverrides,
config Config,
) *SegmentRepairer {
excessOptimalThreshold := config.MaxExcessRateOptimalThreshold
if excessOptimalThreshold < 0 {
excessOptimalThreshold = 0
}
return &SegmentRepairer{
log: log,
statsCollector: newStatsCollector(),
metabase: metabase,
orders: orders,
overlay: overlay,
ec: ecRepairer,
timeout: config.Timeout,
multiplierOptimalThreshold: 1 + excessOptimalThreshold,
repairOverrides: repairOverrides.GetMap(),
reporter: reporter,
reputationUpdateEnabled: config.ReputationUpdateEnabled,
doDeclumping: config.DoDeclumping,
doPlacementCheck: config.DoPlacementCheck,
nowFn: time.Now,
}
}
// Repair retrieves an at-risk segment and repairs and stores lost pieces on new nodes
// note that shouldDelete is used even in the case where err is not null
// note that it will update audit status as failed for nodes that failed piece hash verification during repair downloading.
func (repairer *SegmentRepairer) Repair(ctx context.Context, queueSegment *queue.InjuredSegment) (shouldDelete bool, err error) {
defer mon.Task()(&ctx, queueSegment.StreamID.String(), queueSegment.Position.Encode())(&err)
segment, err := repairer.metabase.GetSegmentByPosition(ctx, metabase.GetSegmentByPosition{
StreamID: queueSegment.StreamID,
Position: queueSegment.Position,
})
if err != nil {
if metabase.ErrSegmentNotFound.Has(err) {
mon.Meter("repair_unnecessary").Mark(1) //mon:locked
mon.Meter("segment_deleted_before_repair").Mark(1) //mon:locked
repairer.log.Debug("segment was deleted")
return true, nil
}
return false, metainfoGetError.Wrap(err)
}
if segment.Inline() {
return true, invalidRepairError.New("cannot repair inline segment")
}
// ignore segment if expired
if segment.Expired(repairer.nowFn()) {
mon.Meter("repair_unnecessary").Mark(1)
mon.Meter("segment_expired_before_repair").Mark(1)
repairer.log.Debug("segment has expired", zap.Stringer("Stream ID", segment.StreamID), zap.Uint64("Position", queueSegment.Position.Encode()))
return true, nil
}
redundancy, err := eestream.NewRedundancyStrategyFromStorj(segment.Redundancy)
if err != nil {
return true, invalidRepairError.New("invalid redundancy strategy: %w", err)
}
stats := repairer.getStatsByRS(&pb.RedundancyScheme{
Type: pb.RedundancyScheme_SchemeType(segment.Redundancy.Algorithm),
ErasureShareSize: segment.Redundancy.ShareSize,
MinReq: int32(segment.Redundancy.RequiredShares),
RepairThreshold: int32(segment.Redundancy.RepairShares),
SuccessThreshold: int32(segment.Redundancy.OptimalShares),
Total: int32(segment.Redundancy.TotalShares),
})
mon.Meter("repair_attempts").Mark(1) //mon:locked
stats.repairAttempts.Mark(1)
mon.IntVal("repair_segment_size").Observe(int64(segment.EncryptedSize)) //mon:locked
stats.repairSegmentSize.Observe(int64(segment.EncryptedSize))
piecesCheck, err := repairer.classifySegmentPieces(ctx, segment)
if err != nil {
return false, err
}
pieces := segment.Pieces
numRetrievable := len(pieces) - len(piecesCheck.MissingPiecesSet)
numHealthy := len(pieces) - len(piecesCheck.MissingPiecesSet) - piecesCheck.NumUnhealthyRetrievable
// irreparable segment
if numRetrievable < int(segment.Redundancy.RequiredShares) {
mon.Counter("repairer_segments_below_min_req").Inc(1) //mon:locked
stats.repairerSegmentsBelowMinReq.Inc(1)
mon.Meter("repair_nodes_unavailable").Mark(1) //mon:locked
stats.repairerNodesUnavailable.Mark(1)
repairer.log.Warn("irreparable segment",
zap.String("StreamID", queueSegment.StreamID.String()),
zap.Uint64("Position", queueSegment.Position.Encode()),
zap.Int("piecesAvailable", numRetrievable),
zap.Int16("piecesRequired", segment.Redundancy.RequiredShares),
)
return false, nil
}
piecesInExcludedCountries, err := repairer.overlay.GetReliablePiecesInExcludedCountries(ctx, pieces)
if err != nil {
return false, overlayQueryError.New("error identifying pieces in excluded countries: %w", err)
}
numHealthyInExcludedCountries := len(piecesInExcludedCountries)
// ensure we get values, even if only zero values, so that redash can have an alert based on this
mon.Counter("repairer_segments_below_min_req").Inc(0) //mon:locked
stats.repairerSegmentsBelowMinReq.Inc(0)
repairThreshold := int32(segment.Redundancy.RepairShares)
pbRedundancy := &pb.RedundancyScheme{
MinReq: int32(segment.Redundancy.RequiredShares),
RepairThreshold: int32(segment.Redundancy.RepairShares),
SuccessThreshold: int32(segment.Redundancy.OptimalShares),
Total: int32(segment.Redundancy.TotalShares),
}
overrideValue := repairer.repairOverrides.GetOverrideValuePB(pbRedundancy)
if overrideValue != 0 {
repairThreshold = overrideValue
}
// repair not needed
if numHealthy-numHealthyInExcludedCountries > int(repairThreshold) {
// remove pieces out of placement without repairing as we are above repair threshold
if len(piecesCheck.OutOfPlacementPiecesSet) > 0 {
var outOfPlacementPieces metabase.Pieces
for _, piece := range pieces {
if _, ok := piecesCheck.OutOfPlacementPiecesSet[piece.Number]; ok {
outOfPlacementPieces = append(outOfPlacementPieces, piece)
}
}
newPieces, err := segment.Pieces.Update(nil, outOfPlacementPieces)
if err != nil {
return false, metainfoPutError.Wrap(err)
}
err = repairer.metabase.UpdateSegmentPieces(ctx, metabase.UpdateSegmentPieces{
StreamID: segment.StreamID,
Position: segment.Position,
OldPieces: segment.Pieces,
NewRedundancy: segment.Redundancy,
NewPieces: newPieces,
NewRepairedAt: time.Now(),
})
if err != nil {
return false, metainfoPutError.Wrap(err)
}
mon.Meter("dropped_out_of_placement_pieces").Mark(len(piecesCheck.OutOfPlacementPiecesSet))
}
mon.Meter("repair_unnecessary").Mark(1) //mon:locked
stats.repairUnnecessary.Mark(1)
repairer.log.Debug("segment above repair threshold", zap.Int("numHealthy", numHealthy), zap.Int32("repairThreshold", repairThreshold),
zap.Int("numClumped", len(piecesCheck.ClumpedPiecesSet)), zap.Int("numOffPieces", len(piecesCheck.OutOfPlacementPiecesSet)))
return true, nil
}
healthyRatioBeforeRepair := 0.0
if segment.Redundancy.TotalShares != 0 {
healthyRatioBeforeRepair = float64(numHealthy) / float64(segment.Redundancy.TotalShares)
}
mon.FloatVal("healthy_ratio_before_repair").Observe(healthyRatioBeforeRepair) //mon:locked
stats.healthyRatioBeforeRepair.Observe(healthyRatioBeforeRepair)
lostPiecesSet := piecesCheck.MissingPiecesSet
var retrievablePieces metabase.Pieces
unhealthyPieces := make(map[metabase.Piece]struct{})
healthySet := make(map[int32]struct{})
// Populate retrievablePieces with all pieces from the segment except those correlating to indices in lostPieces.
// Populate unhealthyPieces with all pieces in lostPieces, clumpedPieces or outOfPlacementPieces.
for _, piece := range pieces {
if lostPiecesSet[piece.Number] {
unhealthyPieces[piece] = struct{}{}
} else {
retrievablePieces = append(retrievablePieces, piece)
if piecesCheck.ClumpedPiecesSet[piece.Number] || piecesCheck.OutOfPlacementPiecesSet[piece.Number] {
unhealthyPieces[piece] = struct{}{}
} else {
healthySet[int32(piece.Number)] = struct{}{}
}
}
}
// Create the order limits for the GET_REPAIR action
getOrderLimits, getPrivateKey, cachedNodesInfo, err := repairer.orders.CreateGetRepairOrderLimits(ctx, segment, retrievablePieces)
if err != nil {
if orders.ErrDownloadFailedNotEnoughPieces.Has(err) {
mon.Counter("repairer_segments_below_min_req").Inc(1) //mon:locked
stats.repairerSegmentsBelowMinReq.Inc(1)
mon.Meter("repair_nodes_unavailable").Mark(1) //mon:locked
stats.repairerNodesUnavailable.Mark(1)
repairer.log.Warn("irreparable segment: too many nodes offline",
zap.String("StreamID", queueSegment.StreamID.String()),
zap.Uint64("Position", queueSegment.Position.Encode()),
zap.Int("piecesAvailable", len(retrievablePieces)),
zap.Int16("piecesRequired", segment.Redundancy.RequiredShares),
zap.Error(err),
)
}
return false, orderLimitFailureError.New("could not create GET_REPAIR order limits: %w", err)
}
// Double check for retrievable pieces which became irretrievable inside CreateGetRepairOrderLimits
// Add them to unhealthyPieces.
for _, piece := range retrievablePieces {
if getOrderLimits[piece.Number] == nil {
unhealthyPieces[piece] = struct{}{}
}
}
numHealthy = len(healthySet)
var requestCount int
var minSuccessfulNeeded int
{
totalNeeded := math.Ceil(float64(redundancy.OptimalThreshold()) * repairer.multiplierOptimalThreshold)
requestCount = int(totalNeeded) + numHealthyInExcludedCountries
if requestCount > redundancy.TotalCount() {
requestCount = redundancy.TotalCount()
}
requestCount -= numHealthy
minSuccessfulNeeded = redundancy.OptimalThreshold() - numHealthy + numHealthyInExcludedCountries
}
// Request Overlay for n-h new storage nodes
request := overlay.FindStorageNodesRequest{
RequestedCount: requestCount,
ExcludedIDs: piecesCheck.ExcludeNodeIDs,
Placement: segment.Placement,
}
newNodes, err := repairer.overlay.FindStorageNodesForUpload(ctx, request)
if err != nil {
return false, overlayQueryError.Wrap(err)
}
// Create the order limits for the PUT_REPAIR action
putLimits, putPrivateKey, err := repairer.orders.CreatePutRepairOrderLimits(ctx, segment, getOrderLimits, healthySet, newNodes, repairer.multiplierOptimalThreshold, numHealthyInExcludedCountries)
if err != nil {
return false, orderLimitFailureError.New("could not create PUT_REPAIR order limits: %w", err)
}
// Download the segment using just the retrievable pieces
segmentReader, piecesReport, err := repairer.ec.Get(ctx, getOrderLimits, cachedNodesInfo, getPrivateKey, redundancy, int64(segment.EncryptedSize))
// ensure we get values, even if only zero values, so that redash can have an alert based on this
mon.Meter("repair_too_many_nodes_failed").Mark(0) //mon:locked
mon.Meter("repair_suspected_network_problem").Mark(0) //mon:locked
stats.repairTooManyNodesFailed.Mark(0)
if repairer.OnTestingPiecesReportHook != nil {
repairer.OnTestingPiecesReportHook(piecesReport)
}
// Check if segment has been altered
checkSegmentError := repairer.checkIfSegmentAltered(ctx, segment)
if checkSegmentError != nil {
if segmentDeletedError.Has(checkSegmentError) {
// mon.Meter("segment_deleted_during_repair").Mark(1) //mon:locked
repairer.log.Debug("segment deleted during Repair")
return true, nil
}
if segmentModifiedError.Has(checkSegmentError) {
// mon.Meter("segment_modified_during_repair").Mark(1) //mon:locked
repairer.log.Debug("segment modified during Repair")
return true, nil
}
return false, segmentVerificationError.Wrap(checkSegmentError)
}
if len(piecesReport.Contained) > 0 {
repairer.log.Debug("unexpected contained pieces during repair", zap.Int("count", len(piecesReport.Contained)))
}
if err != nil {
// If the context was closed during the Get phase, it will appear here as though
// we just failed to download enough pieces to reconstruct the segment. Check for
// a closed context before doing any further error processing.
if ctxErr := ctx.Err(); ctxErr != nil {
return false, ctxErr
}
// If Get failed because of input validation, then it will keep failing. But if it
// gave us irreparableError, then we failed to download enough pieces and must try
// to wait for nodes to come back online.
var irreparableErr *irreparableError
if errors.As(err, &irreparableErr) {
// piecesReport.Offline:
// Nodes which were online recently, but which we couldn't contact for
// this operation.
//
// piecesReport.Failed:
// Nodes which we contacted successfully but which indicated they
// didn't have the piece we wanted.
//
// piecesReport.Contained:
// Nodes which we contacted successfully but timed out after we asked
// for the piece.
//
// piecesReport.Unknown:
// Something else went wrong, and we don't know what.
//
// In a network failure scenario, we expect more than half of the outcomes
// will be in Offline or Contained.
if len(piecesReport.Offline)+len(piecesReport.Contained) > len(piecesReport.Successful)+len(piecesReport.Failed)+len(piecesReport.Unknown) {
mon.Meter("repair_suspected_network_problem").Mark(1) //mon:locked
} else {
mon.Meter("repair_too_many_nodes_failed").Mark(1) //mon:locked
}
stats.repairTooManyNodesFailed.Mark(1)
failedNodeIDs := make([]string, 0, len(piecesReport.Failed))
offlineNodeIDs := make([]string, 0, len(piecesReport.Offline))
timedOutNodeIDs := make([]string, 0, len(piecesReport.Contained))
unknownErrs := make([]string, 0, len(piecesReport.Unknown))
for _, outcome := range piecesReport.Failed {
failedNodeIDs = append(failedNodeIDs, outcome.Piece.StorageNode.String())
}
for _, outcome := range piecesReport.Offline {
offlineNodeIDs = append(offlineNodeIDs, outcome.Piece.StorageNode.String())
}
for _, outcome := range piecesReport.Contained {
timedOutNodeIDs = append(timedOutNodeIDs, outcome.Piece.StorageNode.String())
}
for _, outcome := range piecesReport.Unknown {
// We are purposefully using the error's string here, as opposed
// to wrapping the error. It is not likely that we need the local-side
// traceback of where this error was initially wrapped, and this will
// keep the logs more readable.
unknownErrs = append(unknownErrs, fmt.Sprintf("node ID [%s] err: %v", outcome.Piece.StorageNode, outcome.Err))
}
repairer.log.Warn("irreparable segment: could not acquire enough shares",
zap.String("StreamID", queueSegment.StreamID.String()),
zap.Uint64("Position", queueSegment.Position.Encode()),
zap.Int32("piecesAvailable", irreparableErr.piecesAvailable),
zap.Int32("piecesRequired", irreparableErr.piecesRequired),
zap.Int("numFailedNodes", len(failedNodeIDs)),
zap.Stringer("failedNodes", commaSeparatedArray(failedNodeIDs)),
zap.Int("numOfflineNodes", len(offlineNodeIDs)),
zap.Stringer("offlineNodes", commaSeparatedArray(offlineNodeIDs)),
zap.Int("numTimedOutNodes", len(timedOutNodeIDs)),
zap.Stringer("timedOutNodes", commaSeparatedArray(timedOutNodeIDs)),
zap.Stringer("unknownErrors", commaSeparatedArray(unknownErrs)),
)
// repair will be attempted again if the segment remains unhealthy.
return false, nil
}
// The segment's redundancy strategy is invalid, or else there was an internal error.
return true, repairReconstructError.New("segment could not be reconstructed: %w", err)
}
defer func() { err = errs.Combine(err, segmentReader.Close()) }()
// only report audit result when segment can be successfully downloaded
cachedNodesReputation := make(map[storj.NodeID]overlay.ReputationStatus, len(cachedNodesInfo))
for id, info := range cachedNodesInfo {
cachedNodesReputation[id] = info.Reputation
}
report := audit.Report{
Segment: &segment,
NodesReputation: cachedNodesReputation,
}
for _, outcome := range piecesReport.Successful {
report.Successes = append(report.Successes, outcome.Piece.StorageNode)
}
for _, outcome := range piecesReport.Failed {
report.Fails = append(report.Fails, metabase.Piece{
StorageNode: outcome.Piece.StorageNode,
Number: outcome.Piece.Number,
})
}
for _, outcome := range piecesReport.Offline {
report.Offlines = append(report.Offlines, outcome.Piece.StorageNode)
}
for _, outcome := range piecesReport.Unknown {
report.Unknown = append(report.Unknown, outcome.Piece.StorageNode)
}
if repairer.reputationUpdateEnabled {
repairer.reporter.RecordAudits(ctx, report)
}
// Upload the repaired pieces
successfulNodes, _, err := repairer.ec.Repair(ctx, putLimits, putPrivateKey, redundancy, segmentReader, repairer.timeout, minSuccessfulNeeded)
if err != nil {
return false, repairPutError.Wrap(err)
}
pieceSize := eestream.CalcPieceSize(int64(segment.EncryptedSize), redundancy)
var bytesRepaired int64
// Add the successfully uploaded pieces to repairedPieces
var repairedPieces metabase.Pieces
repairedMap := make(map[uint16]bool)
for i, node := range successfulNodes {
if node == nil {
continue
}
bytesRepaired += pieceSize
piece := metabase.Piece{
Number: uint16(i),
StorageNode: node.Id,
}
repairedPieces = append(repairedPieces, piece)
repairedMap[uint16(i)] = true
}
mon.Meter("repair_bytes_uploaded").Mark64(bytesRepaired) //mon:locked
healthyAfterRepair := numHealthy + len(repairedPieces)
switch {
case healthyAfterRepair <= int(segment.Redundancy.RepairShares):
// Important: this indicates a failure to PUT enough pieces to the network to pass
// the repair threshold, and _not_ a failure to reconstruct the segment. But we
// put at least one piece, else ec.Repair() would have returned an error. So the
// repair "succeeded" in that the segment is now healthier than it was, but it is
// not as healthy as we want it to be.
mon.Meter("repair_failed").Mark(1) //mon:locked
stats.repairFailed.Mark(1)
case healthyAfterRepair < int(segment.Redundancy.OptimalShares):
mon.Meter("repair_partial").Mark(1) //mon:locked
stats.repairPartial.Mark(1)
default:
mon.Meter("repair_success").Mark(1) //mon:locked
stats.repairSuccess.Mark(1)
}
healthyRatioAfterRepair := 0.0
if segment.Redundancy.TotalShares != 0 {
healthyRatioAfterRepair = float64(healthyAfterRepair) / float64(segment.Redundancy.TotalShares)
}
mon.FloatVal("healthy_ratio_after_repair").Observe(healthyRatioAfterRepair) //mon:locked
stats.healthyRatioAfterRepair.Observe(healthyRatioAfterRepair)
var toRemove metabase.Pieces
if healthyAfterRepair >= int(segment.Redundancy.OptimalShares) {
// if full repair, remove all unhealthy pieces
for unhealthyPiece := range unhealthyPieces {
toRemove = append(toRemove, unhealthyPiece)
}
} else {
// if partial repair, leave unrepaired unhealthy pieces in the pointer
for unhealthyPiece := range unhealthyPieces {
if repairedMap[unhealthyPiece.Number] {
// add only repaired pieces in the slice, unrepaired
// unhealthy pieces are not removed from the pointer
toRemove = append(toRemove, unhealthyPiece)
}
}
}
// add pieces that failed piece hashes verification to the removal list
for _, outcome := range piecesReport.Failed {
toRemove = append(toRemove, outcome.Piece)
}
newPieces, err := segment.Pieces.Update(repairedPieces, toRemove)
if err != nil {
return false, repairPutError.Wrap(err)
}
err = repairer.metabase.UpdateSegmentPieces(ctx, metabase.UpdateSegmentPieces{
StreamID: segment.StreamID,
Position: segment.Position,
OldPieces: segment.Pieces,
NewRedundancy: segment.Redundancy,
NewPieces: newPieces,
NewRepairedAt: time.Now(),
})
if err != nil {
return false, metainfoPutError.Wrap(err)
}
repairedAt := time.Time{}
if segment.RepairedAt != nil {
repairedAt = *segment.RepairedAt
}
var segmentAge time.Duration
if segment.CreatedAt.Before(repairedAt) {
segmentAge = time.Since(repairedAt)
} else {
segmentAge = time.Since(segment.CreatedAt)
}
// TODO what to do with RepairCount
var repairCount int64
// pointer.RepairCount++
mon.IntVal("segment_time_until_repair").Observe(int64(segmentAge.Seconds())) //mon:locked
stats.segmentTimeUntilRepair.Observe(int64(segmentAge.Seconds()))
mon.IntVal("segment_repair_count").Observe(repairCount) //mon:locked
stats.segmentRepairCount.Observe(repairCount)
repairer.log.Debug("repaired segment",
zap.Stringer("Stream ID", segment.StreamID),
zap.Uint64("Position", segment.Position.Encode()),
zap.Int("clumped pieces", len(piecesCheck.ClumpedPiecesSet)),
zap.Int("out of placement pieces", len(piecesCheck.OutOfPlacementPiecesSet)),
zap.Int("in excluded countries", numHealthyInExcludedCountries),
zap.Int("removed pieces", len(toRemove)),
zap.Int("repaired pieces", len(repairedPieces)),
zap.Int("healthy before repair", numHealthy),
zap.Int("healthy after repair", healthyAfterRepair))
return true, nil
}
type piecesCheckResult struct {
ExcludeNodeIDs []storj.NodeID
MissingPiecesSet map[uint16]bool
ClumpedPiecesSet map[uint16]bool
OutOfPlacementPiecesSet map[uint16]bool
NumUnhealthyRetrievable int
}
func (repairer *SegmentRepairer) classifySegmentPieces(ctx context.Context, segment metabase.Segment) (result piecesCheckResult, err error) {
defer mon.Task()(&ctx)(&err)
pieces := segment.Pieces
allNodeIDs := make([]storj.NodeID, len(pieces))
nodeIDPieceMap := map[storj.NodeID]uint16{}
result.MissingPiecesSet = map[uint16]bool{}
for i, p := range pieces {
allNodeIDs[i] = p.StorageNode
nodeIDPieceMap[p.StorageNode] = p.Number
result.MissingPiecesSet[p.Number] = true
}
result.ExcludeNodeIDs = allNodeIDs
online, offline, err := repairer.overlay.KnownReliable(ctx, allNodeIDs)
if err != nil {
return piecesCheckResult{}, overlayQueryError.New("error identifying missing pieces: %w", err)
}
// remove online nodes from missing pieces
for _, onlineNode := range online {
pieceNum := nodeIDPieceMap[onlineNode.ID]
delete(result.MissingPiecesSet, pieceNum)
}
if repairer.doDeclumping {
// if multiple pieces are on the same last_net, keep only the first one. The rest are
// to be considered retrievable but unhealthy.
lastNets := make([]string, 0, len(allNodeIDs))
reliablePieces := metabase.Pieces{}
collectLastNets := func(reliable []nodeselection.SelectedNode) {
for _, node := range reliable {
pieceNum := nodeIDPieceMap[node.ID]
reliablePieces = append(reliablePieces, metabase.Piece{
Number: pieceNum,
StorageNode: node.ID,
})
lastNets = append(lastNets, node.LastNet)
}
}
collectLastNets(online)
collectLastNets(offline)
clumpedPieces := repair.FindClumpedPieces(reliablePieces, lastNets)
result.ClumpedPiecesSet = map[uint16]bool{}
for _, clumpedPiece := range clumpedPieces {
result.ClumpedPiecesSet[clumpedPiece.Number] = true
}
}
if repairer.doPlacementCheck && segment.Placement != storj.EveryCountry {
result.OutOfPlacementPiecesSet = map[uint16]bool{}
checkPlacement := func(reliable []nodeselection.SelectedNode) {
for _, node := range reliable {
if segment.Placement.AllowedCountry(node.CountryCode) {
continue
}
result.OutOfPlacementPiecesSet[nodeIDPieceMap[node.ID]] = true
}
}
checkPlacement(online)
checkPlacement(offline)
}
result.NumUnhealthyRetrievable = len(result.ClumpedPiecesSet) + len(result.OutOfPlacementPiecesSet)
if len(result.ClumpedPiecesSet) != 0 && len(result.OutOfPlacementPiecesSet) != 0 {
// verify that some of clumped pieces and out of placement pieces are not the same
unhealthyRetrievableSet := map[uint16]bool{}
maps.Copy(unhealthyRetrievableSet, result.ClumpedPiecesSet)
maps.Copy(unhealthyRetrievableSet, result.OutOfPlacementPiecesSet)
result.NumUnhealthyRetrievable = len(unhealthyRetrievableSet)
}
return result, nil
}
// checkIfSegmentAltered checks if oldSegment has been altered since it was selected for audit.
func (repairer *SegmentRepairer) checkIfSegmentAltered(ctx context.Context, oldSegment metabase.Segment) (err error) {
defer mon.Task()(&ctx)(&err)
if repairer.OnTestingCheckSegmentAlteredHook != nil {
repairer.OnTestingCheckSegmentAlteredHook()
}
newSegment, err := repairer.metabase.GetSegmentByPosition(ctx, metabase.GetSegmentByPosition{
StreamID: oldSegment.StreamID,
Position: oldSegment.Position,
})
if err != nil {
if metabase.ErrSegmentNotFound.Has(err) {
return segmentDeletedError.New("StreamID: %q Position: %d", oldSegment.StreamID.String(), oldSegment.Position.Encode())
}
return err
}
if !oldSegment.Pieces.Equal(newSegment.Pieces) {
return segmentModifiedError.New("StreamID: %q Position: %d", oldSegment.StreamID.String(), oldSegment.Position.Encode())
}
return nil
}
func (repairer *SegmentRepairer) getStatsByRS(redundancy *pb.RedundancyScheme) *stats {
rsString := getRSString(repairer.loadRedundancy(redundancy))
return repairer.statsCollector.getStatsByRS(rsString)
}
func (repairer *SegmentRepairer) loadRedundancy(redundancy *pb.RedundancyScheme) (int, int, int, int) {
repair := int(redundancy.RepairThreshold)
overrideValue := repairer.repairOverrides.GetOverrideValuePB(redundancy)
if overrideValue != 0 {
repair = int(overrideValue)
}
return int(redundancy.MinReq), repair, int(redundancy.SuccessThreshold), int(redundancy.Total)
}
// SetNow allows tests to have the server act as if the current time is whatever they want.
func (repairer *SegmentRepairer) SetNow(nowFn func() time.Time) {
repairer.nowFn = nowFn
}
// AdminFetchInfo groups together all the information about a piece that should be retrievable
// from storage nodes.
type AdminFetchInfo struct {
Reader io.ReadCloser
Hash *pb.PieceHash
GetLimit *pb.AddressedOrderLimit
OriginalLimit *pb.OrderLimit
FetchError error
}
// AdminFetchPieces retrieves raw pieces and the associated hashes and original order
// limits from the storage nodes on which they are stored, and returns them intact to
// the caller rather than decoding or decrypting or verifying anything. This is to be
// used for debugging purposes.
func (repairer *SegmentRepairer) AdminFetchPieces(ctx context.Context, seg *metabase.Segment, saveDir string) (pieceInfos []AdminFetchInfo, err error) {
if seg.Inline() {
return nil, errs.New("cannot download an inline segment")
}
if len(seg.Pieces) < int(seg.Redundancy.RequiredShares) {
return nil, errs.New("segment only has %d pieces; needs %d for reconstruction", seg.Pieces, seg.Redundancy.RequiredShares)
}
// we treat all pieces as "healthy" for our purposes here; we want to download as many
// of them as we reasonably can. Thus, we pass in seg.Pieces for 'healthy'
getOrderLimits, getPrivateKey, cachedNodesInfo, err := repairer.orders.CreateGetRepairOrderLimits(ctx, *seg, seg.Pieces)
if err != nil {
return nil, errs.New("could not create order limits: %w", err)
}
pieceSize := seg.PieceSize()
pieceInfos = make([]AdminFetchInfo, len(getOrderLimits))
limiter := sync2.NewLimiter(int(seg.Redundancy.RequiredShares))
for currentLimitIndex, limit := range getOrderLimits {
if limit == nil {
continue
}
pieceInfos[currentLimitIndex].GetLimit = limit
currentLimitIndex, limit := currentLimitIndex, limit
limiter.Go(ctx, func() {
info := cachedNodesInfo[limit.GetLimit().StorageNodeId]
address := limit.GetStorageNodeAddress().GetAddress()
var triedLastIPPort bool
if info.LastIPPort != "" && info.LastIPPort != address {
address = info.LastIPPort
triedLastIPPort = true
}
pieceReadCloser, hash, originalLimit, err := repairer.ec.downloadAndVerifyPiece(ctx, limit, address, getPrivateKey, saveDir, pieceSize)
// if piecestore dial with last ip:port failed try again with node address
if triedLastIPPort && piecestore.Error.Has(err) {
if pieceReadCloser != nil {
_ = pieceReadCloser.Close()
}
pieceReadCloser, hash, originalLimit, err = repairer.ec.downloadAndVerifyPiece(ctx, limit, limit.GetStorageNodeAddress().GetAddress(), getPrivateKey, saveDir, pieceSize)
}
pieceInfos[currentLimitIndex].Reader = pieceReadCloser
pieceInfos[currentLimitIndex].Hash = hash
pieceInfos[currentLimitIndex].OriginalLimit = originalLimit
pieceInfos[currentLimitIndex].FetchError = err
})
}
limiter.Wait()
return pieceInfos, nil
}
// commaSeparatedArray concatenates an array into a comma-separated string,
// lazily.
type commaSeparatedArray []string
func (c commaSeparatedArray) String() string {
return strings.Join(c, ", ")
}