storj/satellite/repair/checker/online.go
Egon Elbre 267506bb20 satellite/metabase: move package one level higher
metabase has become a central concept and it's more suitable for it to
be directly nested under satellite rather than being part of metainfo.

metainfo is going to be the "endpoint" logic for handling requests.

Change-Id: I53770d6761ac1e9a1283b5aa68f471b21e784198
2021-04-21 15:54:22 +03:00

139 lines
4.2 KiB
Go

// Copyright (C) 2019 Storj Labs, Inc.
// See LICENSE for copying information.
package checker
import (
"context"
"sync"
"sync/atomic"
"time"
"storj.io/common/storj"
"storj.io/storj/satellite/metabase"
"storj.io/storj/satellite/overlay"
)
// ReliabilityCache caches the reliable nodes for the specified staleness duration
// and updates automatically from overlay.
//
// architecture: Service
type ReliabilityCache struct {
overlay *overlay.Service
staleness time.Duration
mu sync.Mutex
state atomic.Value // contains immutable *reliabilityState
}
// reliabilityState.
type reliabilityState struct {
reliable map[storj.NodeID]struct{}
created time.Time
}
// NewReliabilityCache creates a new reliability checking cache.
func NewReliabilityCache(overlay *overlay.Service, staleness time.Duration) *ReliabilityCache {
return &ReliabilityCache{
overlay: overlay,
staleness: staleness,
}
}
// LastUpdate returns when the cache was last updated, or the zero value (time.Time{}) if it
// has never yet been updated. LastUpdate() does not trigger an update itself.
func (cache *ReliabilityCache) LastUpdate() time.Time {
if state, ok := cache.state.Load().(*reliabilityState); ok {
return state.created
}
return time.Time{}
}
// NumNodes returns the number of online active nodes (as determined by the reliability cache).
// This number is not guaranteed to be consistent with either the nodes database or the
// reliability cache after returning; it is just a best-effort count and should be treated as an
// estimate.
func (cache *ReliabilityCache) NumNodes(ctx context.Context) (numNodes int, err error) {
defer mon.Task()(&ctx)(&err)
state, err := cache.loadFast(ctx, time.Time{})
if err != nil {
return 0, err
}
return len(state.reliable), nil
}
// MissingPieces returns piece indices that are unreliable with the given staleness period.
func (cache *ReliabilityCache) MissingPieces(ctx context.Context, created time.Time, pieces metabase.Pieces) (_ []int32, err error) {
defer mon.Task()(&ctx)(&err)
state, err := cache.loadFast(ctx, created)
if err != nil {
return nil, err
}
var unreliable []int32
for _, piece := range pieces {
if _, ok := state.reliable[piece.StorageNode]; !ok {
unreliable = append(unreliable, int32(piece.Number))
}
}
return unreliable, nil
}
func (cache *ReliabilityCache) loadFast(ctx context.Context, validUpTo time.Time) (_ *reliabilityState, err error) {
defer mon.Task()(&ctx)(&err)
// This code is designed to be very fast in the case where a refresh is not needed: just an
// atomic load from rarely written to bit of shared memory. The general strategy is to first
// read if the state suffices to answer the query. If not (due to it not existing, being
// too stale, etc.), then we acquire the mutex to block other requests that may be stale
// and ensure we only issue one refresh at a time. After acquiring the mutex, we have to
// double check that the state is still stale because some other call may have beat us to
// the acquisition. Only then do we refresh and can then proceed answering the query.
state, ok := cache.state.Load().(*reliabilityState)
if !ok || validUpTo.After(state.created) || time.Since(state.created) > cache.staleness {
cache.mu.Lock()
state, ok = cache.state.Load().(*reliabilityState)
if !ok || validUpTo.After(state.created) || time.Since(state.created) > cache.staleness {
state, err = cache.refreshLocked(ctx)
}
cache.mu.Unlock()
if err != nil {
return nil, err
}
}
return state, nil
}
// Refresh refreshes the cache.
func (cache *ReliabilityCache) Refresh(ctx context.Context) (err error) {
defer mon.Task()(&ctx)(&err)
cache.mu.Lock()
defer cache.mu.Unlock()
_, err = cache.refreshLocked(ctx)
return err
}
// refreshLocked does the refreshes assuming the write mutex is held.
func (cache *ReliabilityCache) refreshLocked(ctx context.Context) (_ *reliabilityState, err error) {
defer mon.Task()(&ctx)(&err)
nodes, err := cache.overlay.Reliable(ctx)
if err != nil {
return nil, Error.Wrap(err)
}
state := &reliabilityState{
created: time.Now(),
reliable: make(map[storj.NodeID]struct{}, len(nodes)),
}
for _, id := range nodes {
state.reliable[id] = struct{}{}
}
cache.state.Store(state)
return state, nil
}