storj/satellite/repair/repairer/segments.go
Cameron Ayer e14f7a3fb4 satellite/repair: update healthyPieces and unhealthyPieces after CreateGetRepairOrderLimits
Inside CreateGetRepairOrderLimits we pass in a list of healthy pieces,
but when we query node info from this list we apply the "reliable" filter
again. We sometimes end up with nodes which at first were healthy, but then
became unhealthy, and thus can be repaired, but we do not update the 'unhealthyPieces'
list with these nodes.

This causes an error, 'piece to add already exists', as we fail to remove these
pieces from the pointer before replacing them with repaired pieces.

Change-Id: I6e2445f342ac117ded30351fa7e5e523c9ec26bd
2020-07-23 13:24:46 +00:00

378 lines
13 KiB
Go

// Copyright (C) 2019 Storj Labs, Inc.
// See LICENSE for copying information.
package repairer
import (
"context"
"fmt"
"math"
"time"
"github.com/zeebo/errs"
"go.uber.org/zap"
"storj.io/common/pb"
"storj.io/common/rpc"
"storj.io/common/signing"
"storj.io/common/storj"
"storj.io/storj/satellite/metainfo"
"storj.io/storj/satellite/orders"
"storj.io/storj/satellite/overlay"
"storj.io/uplink/private/eestream"
)
var (
metainfoGetError = errs.Class("metainfo db get error")
metainfoPutError = errs.Class("metainfo db put error")
invalidRepairError = errs.Class("invalid repair")
overlayQueryError = errs.Class("overlay query failure")
orderLimitFailureError = errs.Class("order limits failure")
repairReconstructError = errs.Class("repair reconstruction failure")
repairPutError = errs.Class("repair could not store repaired pieces")
)
// irreparableError identifies situations where a segment could not be repaired due to reasons
// which are hopefully transient (e.g. too many pieces unavailable). The segment should be added
// to the irreparableDB.
type irreparableError struct {
path storj.Path
piecesAvailable int32
piecesRequired int32
segmentInfo *pb.Pointer
}
func (ie *irreparableError) Error() string {
return fmt.Sprintf("%d available pieces < %d required", ie.piecesAvailable, ie.piecesRequired)
}
// SegmentRepairer for segments.
type SegmentRepairer struct {
log *zap.Logger
metainfo *metainfo.Service
orders *orders.Service
overlay *overlay.Service
ec *ECRepairer
timeout time.Duration
// multiplierOptimalThreshold is the value that multiplied by the optimal
// threshold results in the maximum limit of number of nodes to upload
// repaired pieces
multiplierOptimalThreshold float64
//repairOverride is the value handed over from the checker to override the Repair Threshold
repairOverride int
}
// NewSegmentRepairer creates a new instance of SegmentRepairer.
//
// excessPercentageOptimalThreshold is the percentage to apply over the optimal
// threshould to determine the maximum limit of nodes to upload repaired pieces,
// when negative, 0 is applied.
func NewSegmentRepairer(
log *zap.Logger, metainfo *metainfo.Service, orders *orders.Service,
overlay *overlay.Service, dialer rpc.Dialer, timeout time.Duration,
excessOptimalThreshold float64, repairOverride int,
downloadTimeout time.Duration, inMemoryRepair bool,
satelliteSignee signing.Signee,
) *SegmentRepairer {
if excessOptimalThreshold < 0 {
excessOptimalThreshold = 0
}
return &SegmentRepairer{
log: log,
metainfo: metainfo,
orders: orders,
overlay: overlay,
ec: NewECRepairer(log.Named("ec repairer"), dialer, satelliteSignee, downloadTimeout, inMemoryRepair),
timeout: timeout,
multiplierOptimalThreshold: 1 + excessOptimalThreshold,
repairOverride: repairOverride,
}
}
// Repair retrieves an at-risk segment and repairs and stores lost pieces on new nodes
// note that shouldDelete is used even in the case where err is not null
// note that it will update audit status as failed for nodes that failed piece hash verification during repair downloading.
func (repairer *SegmentRepairer) Repair(ctx context.Context, path storj.Path) (shouldDelete bool, err error) {
defer mon.Task()(&ctx, path)(&err)
// Read the segment pointer from the metainfo
pointer, err := repairer.metainfo.Get(ctx, path)
if err != nil {
if storj.ErrObjectNotFound.Has(err) {
mon.Meter("repair_unnecessary").Mark(1) //locked
mon.Meter("segment_deleted_before_repair").Mark(1) //locked
repairer.log.Debug("segment was deleted")
return true, nil
}
return false, metainfoGetError.Wrap(err)
}
if pointer.GetType() != pb.Pointer_REMOTE {
return true, invalidRepairError.New("cannot repair inline segment")
}
if !pointer.ExpirationDate.IsZero() && pointer.ExpirationDate.Before(time.Now().UTC()) {
mon.Meter("repair_expired").Mark(1) //locked
return true, nil
}
mon.Meter("repair_attempts").Mark(1) //locked
mon.IntVal("repair_segment_size").Observe(pointer.GetSegmentSize()) //locked
redundancy, err := eestream.NewRedundancyStrategyFromProto(pointer.GetRemote().GetRedundancy())
if err != nil {
return true, invalidRepairError.New("invalid redundancy strategy: %w", err)
}
var excludeNodeIDs storj.NodeIDList
var healthyPieces, unhealthyPieces []*pb.RemotePiece
healthyMap := make(map[int32]bool)
pieces := pointer.GetRemote().GetRemotePieces()
missingPieces, err := repairer.overlay.GetMissingPieces(ctx, pieces)
if err != nil {
return false, overlayQueryError.New("error identifying missing pieces: %w", err)
}
numHealthy := len(pieces) - len(missingPieces)
// irreparable piece
if int32(numHealthy) < pointer.Remote.Redundancy.MinReq {
mon.Meter("repair_nodes_unavailable").Mark(1) //locked
return true, &irreparableError{
path: path,
piecesAvailable: int32(numHealthy),
piecesRequired: pointer.Remote.Redundancy.MinReq,
segmentInfo: pointer,
}
}
repairThreshold := pointer.Remote.Redundancy.RepairThreshold
if repairer.repairOverride != 0 {
repairThreshold = int32(repairer.repairOverride)
}
// repair not needed
if int32(numHealthy) > repairThreshold {
mon.Meter("repair_unnecessary").Mark(1) //locked
repairer.log.Debug("segment above repair threshold", zap.Int("numHealthy", numHealthy), zap.Int32("repairThreshold", repairThreshold))
return true, nil
}
healthyRatioBeforeRepair := 0.0
if pointer.Remote.Redundancy.Total != 0 {
healthyRatioBeforeRepair = float64(numHealthy) / float64(pointer.Remote.Redundancy.Total)
}
mon.FloatVal("healthy_ratio_before_repair").Observe(healthyRatioBeforeRepair) //locked
lostPiecesSet := sliceToSet(missingPieces)
// Populate healthyPieces with all pieces from the pointer except those correlating to indices in lostPieces
for _, piece := range pieces {
excludeNodeIDs = append(excludeNodeIDs, piece.NodeId)
if !lostPiecesSet[piece.GetPieceNum()] {
healthyPieces = append(healthyPieces, piece)
healthyMap[piece.GetPieceNum()] = true
} else {
unhealthyPieces = append(unhealthyPieces, piece)
}
}
bucketID, err := createBucketID(path)
if err != nil {
return true, invalidRepairError.New("invalid path; cannot repair segment: %w", err)
}
// Create the order limits for the GET_REPAIR action
getOrderLimits, getPrivateKey, err := repairer.orders.CreateGetRepairOrderLimits(ctx, bucketID, pointer, healthyPieces)
if err != nil {
return false, orderLimitFailureError.New("could not create GET_REPAIR order limits: %w", err)
}
// Double check for healthy pieces which became unhealthy inside CreateGetRepairOrderLimits
// Remove them from healthyPieces and add them to unhealthyPieces
var newHealthyPieces []*pb.RemotePiece
for _, piece := range healthyPieces {
if getOrderLimits[piece.GetPieceNum()] == nil {
unhealthyPieces = append(unhealthyPieces, piece)
} else {
newHealthyPieces = append(newHealthyPieces, piece)
}
}
healthyPieces = newHealthyPieces
var requestCount int
var minSuccessfulNeeded int
{
totalNeeded := math.Ceil(float64(redundancy.OptimalThreshold()) *
repairer.multiplierOptimalThreshold,
)
requestCount = int(totalNeeded) - len(healthyPieces)
minSuccessfulNeeded = redundancy.OptimalThreshold() - len(healthyPieces)
}
// Request Overlay for n-h new storage nodes
request := overlay.FindStorageNodesRequest{
RequestedCount: requestCount,
ExcludedIDs: excludeNodeIDs,
}
newNodes, err := repairer.overlay.FindStorageNodesForRepair(ctx, request)
if err != nil {
return false, overlayQueryError.Wrap(err)
}
// Create the order limits for the PUT_REPAIR action
putLimits, putPrivateKey, err := repairer.orders.CreatePutRepairOrderLimits(ctx, bucketID, pointer, getOrderLimits, newNodes)
if err != nil {
return false, orderLimitFailureError.New("could not create PUT_REPAIR order limits: %w", err)
}
// Download the segment using just the healthy pieces
segmentReader, failedPieces, err := repairer.ec.Get(ctx, getOrderLimits, getPrivateKey, redundancy, pointer.GetSegmentSize(), path)
// Populate node IDs that failed piece hashes verification
var failedNodeIDs storj.NodeIDList
for _, piece := range failedPieces {
failedNodeIDs = append(failedNodeIDs, piece.NodeId)
}
// update audit status for nodes that failed piece hash verification during downloading
failedNum, updateErr := repairer.updateAuditFailStatus(ctx, failedNodeIDs)
if updateErr != nil || failedNum > 0 {
// failed updates should not affect repair, therefore we will not return the error
repairer.log.Debug("failed to update audit fail status", zap.Int("Failed Update Number", failedNum), zap.Error(err))
}
if err != nil {
// If Get failed because of input validation, then it will keep failing. But if it
// gave us irreparableError, then we failed to download enough pieces and must try
// to wait for nodes to come back online.
if irreparableErr, ok := err.(*irreparableError); ok {
mon.Meter("repair_too_many_nodes_failed").Mark(1) //locked
irreparableErr.segmentInfo = pointer
return true, irreparableErr
}
// The segment's redundancy strategy is invalid, or else there was an internal error.
return true, repairReconstructError.New("segment could not be reconstructed: %w", err)
}
defer func() { err = errs.Combine(err, segmentReader.Close()) }()
// Upload the repaired pieces
successfulNodes, hashes, err := repairer.ec.Repair(ctx, putLimits, putPrivateKey, redundancy, segmentReader, repairer.timeout, path, minSuccessfulNeeded)
if err != nil {
return false, repairPutError.Wrap(err)
}
// Add the successfully uploaded pieces to repairedPieces
var repairedPieces []*pb.RemotePiece
repairedMap := make(map[int32]bool)
for i, node := range successfulNodes {
if node == nil {
continue
}
piece := pb.RemotePiece{
PieceNum: int32(i),
NodeId: node.Id,
Hash: hashes[i],
}
repairedPieces = append(repairedPieces, &piece)
repairedMap[int32(i)] = true
}
healthyAfterRepair := int32(len(healthyPieces) + len(repairedPieces))
switch {
case healthyAfterRepair <= pointer.Remote.Redundancy.RepairThreshold:
// Important: this indicates a failure to PUT enough pieces to the network to pass
// the repair threshold, and _not_ a failure to reconstruct the segment. But we
// put at least one piece, else ec.Repair() would have returned an error. So the
// repair "succeeded" in that the segment is now healthier than it was, but it is
// not as healthy as we want it to be.
mon.Meter("repair_failed").Mark(1) //locked
case healthyAfterRepair < pointer.Remote.Redundancy.SuccessThreshold:
mon.Meter("repair_partial").Mark(1) //locked
default:
mon.Meter("repair_success").Mark(1) //locked
}
healthyRatioAfterRepair := 0.0
if pointer.Remote.Redundancy.Total != 0 {
healthyRatioAfterRepair = float64(healthyAfterRepair) / float64(pointer.Remote.Redundancy.Total)
}
mon.FloatVal("healthy_ratio_after_repair").Observe(healthyRatioAfterRepair) //locked
var toRemove []*pb.RemotePiece
if healthyAfterRepair >= pointer.Remote.Redundancy.SuccessThreshold {
// if full repair, remove all unhealthy pieces
toRemove = unhealthyPieces
} else {
// if partial repair, leave unrepaired unhealthy pieces in the pointer
for _, piece := range unhealthyPieces {
if repairedMap[piece.GetPieceNum()] {
// add only repaired pieces in the slice, unrepaired
// unhealthy pieces are not removed from the pointer
toRemove = append(toRemove, piece)
}
}
}
// add pieces that failed piece hashes verification to the removal list
toRemove = append(toRemove, failedPieces...)
var segmentAge time.Duration
if pointer.CreationDate.Before(pointer.LastRepaired) {
segmentAge = time.Since(pointer.LastRepaired)
} else {
segmentAge = time.Since(pointer.CreationDate)
}
pointer.LastRepaired = time.Now().UTC()
pointer.RepairCount++
// Update the segment pointer in the metainfo
_, err = repairer.metainfo.UpdatePieces(ctx, path, pointer, repairedPieces, toRemove)
if err != nil {
return false, metainfoPutError.Wrap(err)
}
mon.IntVal("segment_time_until_repair").Observe(int64(segmentAge.Seconds())) //locked
mon.IntVal("segment_repair_count").Observe(int64(pointer.RepairCount)) //locked
return true, nil
}
func (repairer *SegmentRepairer) updateAuditFailStatus(ctx context.Context, failedAuditNodeIDs storj.NodeIDList) (failedNum int, err error) {
updateRequests := make([]*overlay.UpdateRequest, len(failedAuditNodeIDs))
for i, nodeID := range failedAuditNodeIDs {
updateRequests[i] = &overlay.UpdateRequest{
NodeID: nodeID,
IsUp: true,
AuditOutcome: overlay.AuditFailure,
}
}
if len(updateRequests) > 0 {
failed, err := repairer.overlay.BatchUpdateStats(ctx, updateRequests)
if err != nil || len(failed) > 0 {
return len(failed), errs.Combine(Error.New("failed to update some audit fail statuses in overlay"), err)
}
}
return 0, nil
}
// sliceToSet converts the given slice to a set.
func sliceToSet(slice []int32) map[int32]bool {
set := make(map[int32]bool, len(slice))
for _, value := range slice {
set[value] = true
}
return set
}
func createBucketID(path storj.Path) ([]byte, error) {
comps := storj.SplitPath(path)
if len(comps) < 3 {
return nil, Error.New("no bucket component in path: %s", path)
}
return []byte(storj.JoinPaths(comps[0], comps[2])), nil
}