storj/uplink/eestream/piecebuf.go
Egon Elbre 5d0816430f
rename all the things (#2531)
* rename pkg/linksharing to linksharing
* rename pkg/httpserver to linksharing/httpserver
* rename pkg/eestream to uplink/eestream
* rename pkg/stream to uplink/stream
* rename pkg/metainfo/kvmetainfo to uplink/metainfo/kvmetainfo
* rename pkg/auth/signing to pkg/signing
* rename pkg/storage to uplink/storage
* rename pkg/accounting to satellite/accounting
* rename pkg/audit to satellite/audit
* rename pkg/certdb to satellite/certdb
* rename pkg/discovery to satellite/discovery
* rename pkg/overlay to satellite/overlay
* rename pkg/datarepair to satellite/repair
2019-07-28 08:55:36 +03:00

295 lines
6.6 KiB
Go

// Copyright (C) 2019 Storj Labs, Inc.
// See LICENSE for copying information.
package eestream
import (
"io"
"sync"
"go.uber.org/zap"
)
// PieceBuffer is a synchronized buffer for storing erasure shares for a piece.
type PieceBuffer struct {
buf []byte
shareSize int
cond *sync.Cond
newDataCond *sync.Cond
rpos, wpos int
full bool
currentShare int64 // current erasure share number
totalwr int64 // total bytes ever written to the buffer
lastwr int64 // total bytes ever written when last notified newDataCond
err error
}
// NewPieceBuffer creates and initializes a new PieceBuffer using buf as its
// internal content. If new data is written to the buffer, newDataCond will be
// notified.
func NewPieceBuffer(buf []byte, shareSize int, newDataCond *sync.Cond) *PieceBuffer {
return &PieceBuffer{
buf: buf,
shareSize: shareSize,
cond: sync.NewCond(&sync.Mutex{}),
newDataCond: newDataCond,
}
}
// Read reads the next len(p) bytes from the buffer or until the buffer is
// drained. The return value n is the number of bytes read. If the buffer has
// no data to return and no error is set, the call will block until new data is
// written to the buffer. Otherwise the error will be returned.
func (b *PieceBuffer) Read(p []byte) (n int, err error) {
defer b.cond.Broadcast()
b.cond.L.Lock()
defer b.cond.L.Unlock()
for b.empty() {
if b.err != nil {
return 0, b.err
}
b.cond.Wait()
}
if b.rpos >= b.wpos {
nn := copy(p, b.buf[b.rpos:])
n += nn
b.rpos = (b.rpos + nn) % len(b.buf)
p = p[nn:]
}
if b.rpos < b.wpos {
nn := copy(p, b.buf[b.rpos:b.wpos])
n += nn
b.rpos += nn
}
if n > 0 {
b.full = false
}
return n, nil
}
// Skip advances the read pointer with n bytes. It the buffered number of bytes
// are less than n, the method will block until enough data is written to the
// buffer.
func (b *PieceBuffer) Skip(n int) error {
defer b.cond.Broadcast()
b.cond.L.Lock()
defer b.cond.L.Unlock()
for n > 0 {
for b.empty() {
if b.err != nil {
return b.err
}
b.cond.Wait()
}
if b.rpos >= b.wpos {
if len(b.buf)-b.rpos > n {
b.rpos = (b.rpos + n) % len(b.buf)
n = 0
} else {
n -= len(b.buf) - b.rpos
b.rpos = 0
}
} else {
if b.wpos-b.rpos > n {
b.rpos += n
n = 0
} else {
n -= b.wpos - b.rpos
b.rpos = b.wpos
}
}
b.full = false
}
return nil
}
// Write writes the contents of p into the buffer. If the buffer is full it
// will block until some data is read from it, or an error is set. The return
// value n is the number of bytes written. If an error was set, it be returned.
func (b *PieceBuffer) Write(p []byte) (n int, err error) {
for n < len(p) {
nn, err := b.write(p[n:])
n += nn
if err != nil {
return n, err
}
// Notify for new data only if a new complete erasure share is available
b.totalwr += int64(nn)
if b.totalwr/int64(b.shareSize)-b.lastwr/int64(b.shareSize) > 0 {
b.lastwr = b.totalwr
b.notifyNewData()
}
}
return n, nil
}
// write is a helper method that takes care for the locking on each copy
// iteration.
func (b *PieceBuffer) write(p []byte) (n int, err error) {
defer b.cond.Broadcast()
b.cond.L.Lock()
defer b.cond.L.Unlock()
for b.full {
if b.err != nil {
return n, b.err
}
b.cond.Wait()
}
var wr int
if b.wpos < b.rpos {
wr = copy(b.buf[b.wpos:b.rpos], p)
} else {
wr = copy(b.buf[b.wpos:], p)
}
n += wr
b.wpos = (b.wpos + wr) % len(b.buf)
if b.wpos == b.rpos {
b.full = true
}
return n, nil
}
// Close sets io.ErrClosedPipe to the buffer to prevent further writes and
// blocking on read.
func (b *PieceBuffer) Close() error {
b.SetError(io.ErrClosedPipe)
return nil
}
// SetError sets an error to be returned by Read and Write. Read will return
// the error after all data is read from the buffer.
func (b *PieceBuffer) SetError(err error) {
b.setError(err)
b.notifyNewData()
}
// setError is a helper method that locks the mutex before setting the error.
func (b *PieceBuffer) setError(err error) {
defer b.cond.Broadcast()
b.cond.L.Lock()
defer b.cond.L.Unlock()
b.err = err
}
// getError is a helper method that locks the mutex before getting the error.
func (b *PieceBuffer) getError() error {
b.cond.L.Lock()
defer b.cond.L.Unlock()
return b.err
}
// notifyNewData notifies newDataCond that new data is written to the buffer.
func (b *PieceBuffer) notifyNewData() {
b.newDataCond.L.Lock()
defer b.newDataCond.L.Unlock()
b.newDataCond.Broadcast()
}
// empty chacks if the buffer is empty.
func (b *PieceBuffer) empty() bool {
return !b.full && b.rpos == b.wpos
}
// buffered returns the number of bytes that can be read from the buffer
// without blocking.
func (b *PieceBuffer) buffered() int {
b.cond.L.Lock()
defer b.cond.L.Unlock()
switch {
case b.rpos < b.wpos:
return b.wpos - b.rpos
case b.rpos > b.wpos:
return len(b.buf) + b.wpos - b.rpos
case b.full:
return len(b.buf)
default: // empty
return 0
}
}
// HasShare checks if the num-th share can be read from the buffer without
// blocking. If there are older erasure shares in the buffer, they will be
// discarded to leave room for the newer erasure shares to be written.
func (b *PieceBuffer) HasShare(num int64) bool {
if num < b.currentShare {
// we should never get here!
zap.S().Fatalf("Checking for erasure share %d while the current erasure share is %d.",
num, b.currentShare)
}
if b.getError() != nil {
return true
}
bufShares := int64(b.buffered() / b.shareSize)
if num-b.currentShare > 0 {
if bufShares > num-b.currentShare {
// TODO: should this error be ignored?
_ = b.discardUntil(num)
} else {
_ = b.discardUntil(b.currentShare + bufShares)
}
bufShares = int64(b.buffered() / b.shareSize)
}
return bufShares > num-b.currentShare
}
// ReadShare reads the num-th erasure share from the buffer into p. Any shares
// before num will be discarded from the buffer.
func (b *PieceBuffer) ReadShare(num int64, p []byte) error {
if num < b.currentShare {
// we should never get here!
zap.S().Fatalf("Trying to read erasure share %d while the current erasure share is already %d.",
num, b.currentShare)
}
err := b.discardUntil(num)
if err != nil {
return err
}
_, err = io.ReadFull(b, p)
if err != nil {
return err
}
b.currentShare++
return nil
}
// discardUntil discards all erasure shares from the buffer until the num-th
// erasure share exclusively.
func (b *PieceBuffer) discardUntil(num int64) error {
if num <= b.currentShare {
return nil
}
err := b.Skip(int(num-b.currentShare) * b.shareSize)
if err != nil {
return err
}
b.currentShare = num
return nil
}