storj/satellite/repair/repairer/segments.go
paul cannon 72189330fd satellite/gracefulexit: revamp graceful exit
Currently, graceful exit is a complicated subsystem that keeps a queue
of all pieces expected to be on a node, and asks the node to transfer
those pieces to other nodes one by one. The complexity of the system
has, unfortunately, led to numerous bugs and unexpected behaviors.

We have decided to remove this entire subsystem and restructure graceful
exit as follows:

* Nodes will signal their intent to exit gracefully
* The satellite will not send any new pieces to gracefully exiting nodes
* Pieces on gracefully exiting nodes will be considered by the repair
  subsystem as "retrievable but unhealthy". They will be repaired off of
  the exiting node as needed.
* After one month (with an appropriately high online score), the node
  will be considered exited, and held amounts for the node will be
  released. The repair worker will continue to fetch pieces from the
  node as long as the node stays online.
* If, at the end of the month, a node's online score is below a certain
  threshold, its graceful exit will fail.

Refs: https://github.com/storj/storj/issues/6042
Change-Id: I52d4e07a4198e9cb2adf5e6cee2cb64d6f9f426b
2023-09-27 08:40:01 +00:00

798 lines
30 KiB
Go

// Copyright (C) 2019 Storj Labs, Inc.
// See LICENSE for copying information.
package repairer
import (
"context"
"errors"
"fmt"
"io"
"math"
"strings"
"time"
"github.com/zeebo/errs"
"go.uber.org/zap"
"golang.org/x/exp/maps"
"storj.io/common/pb"
"storj.io/common/storj"
"storj.io/common/storj/location"
"storj.io/common/sync2"
"storj.io/storj/satellite/audit"
"storj.io/storj/satellite/metabase"
"storj.io/storj/satellite/orders"
"storj.io/storj/satellite/overlay"
"storj.io/storj/satellite/repair"
"storj.io/storj/satellite/repair/checker"
"storj.io/storj/satellite/repair/queue"
"storj.io/uplink/private/eestream"
"storj.io/uplink/private/piecestore"
)
var (
metainfoGetError = errs.Class("metainfo db get")
metainfoPutError = errs.Class("metainfo db put")
invalidRepairError = errs.Class("invalid repair")
overlayQueryError = errs.Class("overlay query failure")
orderLimitFailureError = errs.Class("order limits failure")
repairReconstructError = errs.Class("repair reconstruction failure")
repairPutError = errs.Class("repair could not store repaired pieces")
// segmentVerificationError is the errs class when the repaired segment can not be verified during repair.
segmentVerificationError = errs.Class("segment verification failed")
// segmentDeletedError is the errs class when the repaired segment was deleted during the repair.
segmentDeletedError = errs.Class("segment deleted during repair")
// segmentModifiedError is the errs class used when a segment has been changed in any way.
segmentModifiedError = errs.Class("segment has been modified")
)
// irreparableError identifies situations where a segment could not be repaired due to reasons
// which are hopefully transient (e.g. too many pieces unavailable). The segment should be added
// to the irreparableDB.
type irreparableError struct {
piecesAvailable int32
piecesRequired int32
}
func (ie *irreparableError) Error() string {
return fmt.Sprintf("%d available pieces < %d required", ie.piecesAvailable, ie.piecesRequired)
}
// PieceFetchResult combines a piece pointer with the error we got when we tried
// to acquire that piece.
type PieceFetchResult struct {
Piece metabase.Piece
Err error
}
// FetchResultReport contains a categorization of a set of pieces based on the results of
// GET operations.
type FetchResultReport struct {
Successful []PieceFetchResult
Failed []PieceFetchResult
Offline []PieceFetchResult
Contained []PieceFetchResult
Unknown []PieceFetchResult
}
// SegmentRepairer for segments.
type SegmentRepairer struct {
log *zap.Logger
statsCollector *statsCollector
metabase *metabase.DB
orders *orders.Service
overlay *overlay.Service
ec *ECRepairer
timeout time.Duration
reporter audit.Reporter
reputationUpdateEnabled bool
doDeclumping bool
doPlacementCheck bool
// multiplierOptimalThreshold is the value that multiplied by the optimal
// threshold results in the maximum limit of number of nodes to upload
// repaired pieces
multiplierOptimalThreshold float64
// repairOverrides is the set of values configured by the checker to override the repair threshold for various RS schemes.
repairOverrides checker.RepairOverridesMap
excludedCountryCodes map[location.CountryCode]struct{}
nowFn func() time.Time
OnTestingCheckSegmentAlteredHook func()
OnTestingPiecesReportHook func(pieces FetchResultReport)
placementRules overlay.PlacementRules
}
// NewSegmentRepairer creates a new instance of SegmentRepairer.
//
// excessPercentageOptimalThreshold is the percentage to apply over the optimal
// threshould to determine the maximum limit of nodes to upload repaired pieces,
// when negative, 0 is applied.
func NewSegmentRepairer(
log *zap.Logger,
metabase *metabase.DB,
orders *orders.Service,
overlay *overlay.Service,
reporter audit.Reporter,
ecRepairer *ECRepairer,
placementRules overlay.PlacementRules,
repairOverrides checker.RepairOverrides,
config Config,
) *SegmentRepairer {
excessOptimalThreshold := config.MaxExcessRateOptimalThreshold
if excessOptimalThreshold < 0 {
excessOptimalThreshold = 0
}
excludedCountryCodes := make(map[location.CountryCode]struct{})
for _, countryCode := range config.RepairExcludedCountryCodes {
if cc := location.ToCountryCode(countryCode); cc != location.None {
excludedCountryCodes[cc] = struct{}{}
}
}
return &SegmentRepairer{
log: log,
statsCollector: newStatsCollector(),
metabase: metabase,
orders: orders,
overlay: overlay,
ec: ecRepairer,
timeout: config.Timeout,
multiplierOptimalThreshold: 1 + excessOptimalThreshold,
repairOverrides: repairOverrides.GetMap(),
excludedCountryCodes: excludedCountryCodes,
reporter: reporter,
reputationUpdateEnabled: config.ReputationUpdateEnabled,
doDeclumping: config.DoDeclumping,
doPlacementCheck: config.DoPlacementCheck,
placementRules: placementRules,
nowFn: time.Now,
}
}
// Repair retrieves an at-risk segment and repairs and stores lost pieces on new nodes
// note that shouldDelete is used even in the case where err is not null
// note that it will update audit status as failed for nodes that failed piece hash verification during repair downloading.
func (repairer *SegmentRepairer) Repair(ctx context.Context, queueSegment *queue.InjuredSegment) (shouldDelete bool, err error) {
defer mon.Task()(&ctx, queueSegment.StreamID.String(), queueSegment.Position.Encode())(&err)
segment, err := repairer.metabase.GetSegmentByPosition(ctx, metabase.GetSegmentByPosition{
StreamID: queueSegment.StreamID,
Position: queueSegment.Position,
})
if err != nil {
if metabase.ErrSegmentNotFound.Has(err) {
mon.Meter("repair_unnecessary").Mark(1) //mon:locked
mon.Meter("segment_deleted_before_repair").Mark(1) //mon:locked
repairer.log.Debug("segment was deleted")
return true, nil
}
return false, metainfoGetError.Wrap(err)
}
if segment.Inline() {
return true, invalidRepairError.New("cannot repair inline segment")
}
// ignore segment if expired
if segment.Expired(repairer.nowFn()) {
mon.Meter("repair_unnecessary").Mark(1)
mon.Meter("segment_expired_before_repair").Mark(1)
repairer.log.Debug("segment has expired", zap.Stringer("Stream ID", segment.StreamID), zap.Uint64("Position", queueSegment.Position.Encode()))
return true, nil
}
redundancy, err := eestream.NewRedundancyStrategyFromStorj(segment.Redundancy)
if err != nil {
return true, invalidRepairError.New("invalid redundancy strategy: %w", err)
}
stats := repairer.getStatsByRS(&pb.RedundancyScheme{
Type: pb.RedundancyScheme_SchemeType(segment.Redundancy.Algorithm),
ErasureShareSize: segment.Redundancy.ShareSize,
MinReq: int32(segment.Redundancy.RequiredShares),
RepairThreshold: int32(segment.Redundancy.RepairShares),
SuccessThreshold: int32(segment.Redundancy.OptimalShares),
Total: int32(segment.Redundancy.TotalShares),
})
mon.Meter("repair_attempts").Mark(1) //mon:locked
stats.repairAttempts.Mark(1)
mon.IntVal("repair_segment_size").Observe(int64(segment.EncryptedSize)) //mon:locked
stats.repairSegmentSize.Observe(int64(segment.EncryptedSize))
allNodeIDs := make([]storj.NodeID, len(segment.Pieces))
for i, p := range segment.Pieces {
allNodeIDs[i] = p.StorageNode
}
selectedNodes, err := repairer.overlay.GetNodes(ctx, allNodeIDs)
if err != nil {
return false, overlayQueryError.New("error identifying missing pieces: %w", err)
}
if len(selectedNodes) != len(segment.Pieces) {
repairer.log.Error("GetNodes returned an invalid result", zap.Any("pieces", segment.Pieces), zap.Any("selectedNodes", selectedNodes), zap.Error(err))
return false, overlayQueryError.New("GetNodes returned an invalid result")
}
pieces := segment.Pieces
piecesCheck := repair.ClassifySegmentPieces(pieces, selectedNodes, repairer.excludedCountryCodes, repairer.doPlacementCheck, repairer.doDeclumping, repairer.placementRules(segment.Placement))
// irreparable segment
if len(piecesCheck.Retrievable) < int(segment.Redundancy.RequiredShares) {
mon.Counter("repairer_segments_below_min_req").Inc(1) //mon:locked
stats.repairerSegmentsBelowMinReq.Inc(1)
mon.Meter("repair_nodes_unavailable").Mark(1) //mon:locked
stats.repairerNodesUnavailable.Mark(1)
repairer.log.Warn("irreparable segment",
zap.String("StreamID", queueSegment.StreamID.String()),
zap.Uint64("Position", queueSegment.Position.Encode()),
zap.Int("piecesAvailable", len(piecesCheck.Retrievable)),
zap.Int16("piecesRequired", segment.Redundancy.RequiredShares),
)
return false, nil
}
// ensure we get values, even if only zero values, so that redash can have an alert based on this
mon.Counter("repairer_segments_below_min_req").Inc(0) //mon:locked
stats.repairerSegmentsBelowMinReq.Inc(0)
repairThreshold := int32(segment.Redundancy.RepairShares)
pbRedundancy := &pb.RedundancyScheme{
MinReq: int32(segment.Redundancy.RequiredShares),
RepairThreshold: int32(segment.Redundancy.RepairShares),
SuccessThreshold: int32(segment.Redundancy.OptimalShares),
Total: int32(segment.Redundancy.TotalShares),
}
overrideValue := repairer.repairOverrides.GetOverrideValuePB(pbRedundancy)
if overrideValue != 0 {
repairThreshold = overrideValue
}
if len(piecesCheck.Healthy) > int(repairThreshold) {
// No repair is needed (note Healthy does not include pieces in ForcingRepair).
var dropPieces metabase.Pieces
if len(piecesCheck.ForcingRepair) > 0 {
// No repair is needed, but remove forcing-repair pieces without a repair operation,
// as we will still be above the repair threshold.
for _, piece := range pieces {
if _, ok := piecesCheck.ForcingRepair[piece.Number]; ok {
dropPieces = append(dropPieces, piece)
}
}
if len(dropPieces) > 0 {
newPieces, err := segment.Pieces.Update(nil, dropPieces)
if err != nil {
return false, metainfoPutError.Wrap(err)
}
err = repairer.metabase.UpdateSegmentPieces(ctx, metabase.UpdateSegmentPieces{
StreamID: segment.StreamID,
Position: segment.Position,
OldPieces: segment.Pieces,
NewRedundancy: segment.Redundancy,
NewPieces: newPieces,
NewRepairedAt: time.Now(),
})
if err != nil {
return false, metainfoPutError.Wrap(err)
}
mon.Meter("dropped_undesirable_pieces_without_repair").Mark(len(dropPieces))
}
}
mon.Meter("repair_unnecessary").Mark(1) //mon:locked
stats.repairUnnecessary.Mark(1)
repairer.log.Debug("segment above repair threshold", zap.Int("numHealthy", len(piecesCheck.Healthy)), zap.Int32("repairThreshold", repairThreshold),
zap.Int("numClumped", len(piecesCheck.Clumped)), zap.Int("numExiting", len(piecesCheck.Exiting)), zap.Int("numOffPieces", len(piecesCheck.OutOfPlacement)),
zap.Int("numExcluded", len(piecesCheck.InExcludedCountry)), zap.Int("droppedPieces", len(dropPieces)))
return true, nil
}
healthyRatioBeforeRepair := 0.0
if segment.Redundancy.TotalShares != 0 {
healthyRatioBeforeRepair = float64(len(piecesCheck.Healthy)) / float64(segment.Redundancy.TotalShares)
}
mon.FloatVal("healthy_ratio_before_repair").Observe(healthyRatioBeforeRepair) //mon:locked
stats.healthyRatioBeforeRepair.Observe(healthyRatioBeforeRepair)
// Create the order limits for the GET_REPAIR action
retrievablePieces := make(metabase.Pieces, 0, len(piecesCheck.Retrievable))
for _, piece := range pieces {
if _, found := piecesCheck.Retrievable[piece.Number]; found {
retrievablePieces = append(retrievablePieces, piece)
}
}
getOrderLimits, getPrivateKey, cachedNodesInfo, err := repairer.orders.CreateGetRepairOrderLimits(ctx, segment, retrievablePieces)
if err != nil {
if orders.ErrDownloadFailedNotEnoughPieces.Has(err) {
mon.Counter("repairer_segments_below_min_req").Inc(1) //mon:locked
stats.repairerSegmentsBelowMinReq.Inc(1)
mon.Meter("repair_nodes_unavailable").Mark(1) //mon:locked
stats.repairerNodesUnavailable.Mark(1)
repairer.log.Warn("irreparable segment: too many nodes offline",
zap.String("StreamID", queueSegment.StreamID.String()),
zap.Uint64("Position", queueSegment.Position.Encode()),
zap.Int("piecesAvailable", len(retrievablePieces)),
zap.Int16("piecesRequired", segment.Redundancy.RequiredShares),
zap.Error(err),
)
}
return false, orderLimitFailureError.New("could not create GET_REPAIR order limits: %w", err)
}
// Double check for retrievable pieces which were recognized as irretrievable during the
// call to CreateGetRepairOrderLimits. Add or remove them from the appropriate sets.
for _, piece := range retrievablePieces {
if getOrderLimits[piece.Number] == nil {
piecesCheck.Missing[piece.Number] = struct{}{}
piecesCheck.Unhealthy[piece.Number] = struct{}{}
delete(piecesCheck.Healthy, piece.Number)
delete(piecesCheck.Retrievable, piece.Number)
delete(piecesCheck.UnhealthyRetrievable, piece.Number)
}
}
var requestCount int
{
totalNeeded := int(math.Ceil(float64(redundancy.OptimalThreshold()) * repairer.multiplierOptimalThreshold))
if totalNeeded > redundancy.TotalCount() {
totalNeeded = redundancy.TotalCount()
}
requestCount = totalNeeded - len(piecesCheck.Healthy)
}
minSuccessfulNeeded := redundancy.OptimalThreshold() - len(piecesCheck.Healthy)
// Request Overlay for n-h new storage nodes
request := overlay.FindStorageNodesRequest{
RequestedCount: requestCount,
ExcludedIDs: piecesCheck.ExcludeNodeIDs,
Placement: segment.Placement,
}
newNodes, err := repairer.overlay.FindStorageNodesForUpload(ctx, request)
if err != nil {
return false, overlayQueryError.Wrap(err)
}
// Create the order limits for the PUT_REPAIR action. We want to keep pieces in Healthy
// as well as pieces in InExcludedCountry (our policy is to let those nodes keep the
// pieces they have, as long as they are kept intact and retrievable).
maxToKeep := int(segment.Redundancy.TotalShares) - len(newNodes)
toKeep := map[uint16]struct{}{}
maps.Copy(toKeep, piecesCheck.Healthy)
for excludedNodeNum := range piecesCheck.InExcludedCountry {
if len(toKeep) >= maxToKeep {
break
}
toKeep[excludedNodeNum] = struct{}{}
}
putLimits, putPrivateKey, err := repairer.orders.CreatePutRepairOrderLimits(ctx, segment, getOrderLimits, toKeep, newNodes)
if err != nil {
return false, orderLimitFailureError.New("could not create PUT_REPAIR order limits: %w", err)
}
// Download the segment using just the retrievable pieces
segmentReader, piecesReport, err := repairer.ec.Get(ctx, getOrderLimits, cachedNodesInfo, getPrivateKey, redundancy, int64(segment.EncryptedSize))
// ensure we get values, even if only zero values, so that redash can have an alert based on this
mon.Meter("repair_too_many_nodes_failed").Mark(0) //mon:locked
mon.Meter("repair_suspected_network_problem").Mark(0) //mon:locked
stats.repairTooManyNodesFailed.Mark(0)
if repairer.OnTestingPiecesReportHook != nil {
repairer.OnTestingPiecesReportHook(piecesReport)
}
// Check if segment has been altered
checkSegmentError := repairer.checkIfSegmentAltered(ctx, segment)
if checkSegmentError != nil {
if segmentDeletedError.Has(checkSegmentError) {
// mon.Meter("segment_deleted_during_repair").Mark(1) //mon:locked
repairer.log.Debug("segment deleted during Repair")
return true, nil
}
if segmentModifiedError.Has(checkSegmentError) {
// mon.Meter("segment_modified_during_repair").Mark(1) //mon:locked
repairer.log.Debug("segment modified during Repair")
return true, nil
}
return false, segmentVerificationError.Wrap(checkSegmentError)
}
if len(piecesReport.Contained) > 0 {
repairer.log.Debug("unexpected contained pieces during repair", zap.Int("count", len(piecesReport.Contained)))
}
if err != nil {
// If the context was closed during the Get phase, it will appear here as though
// we just failed to download enough pieces to reconstruct the segment. Check for
// a closed context before doing any further error processing.
if ctxErr := ctx.Err(); ctxErr != nil {
return false, ctxErr
}
// If Get failed because of input validation, then it will keep failing. But if it
// gave us irreparableError, then we failed to download enough pieces and must try
// to wait for nodes to come back online.
var irreparableErr *irreparableError
if errors.As(err, &irreparableErr) {
// piecesReport.Offline:
// Nodes which were online recently, but which we couldn't contact for
// this operation.
//
// piecesReport.Failed:
// Nodes which we contacted successfully but which indicated they
// didn't have the piece we wanted.
//
// piecesReport.Contained:
// Nodes which we contacted successfully but timed out after we asked
// for the piece.
//
// piecesReport.Unknown:
// Something else went wrong, and we don't know what.
//
// In a network failure scenario, we expect more than half of the outcomes
// will be in Offline or Contained.
if len(piecesReport.Offline)+len(piecesReport.Contained) > len(piecesReport.Successful)+len(piecesReport.Failed)+len(piecesReport.Unknown) {
mon.Meter("repair_suspected_network_problem").Mark(1) //mon:locked
} else {
mon.Meter("repair_too_many_nodes_failed").Mark(1) //mon:locked
}
stats.repairTooManyNodesFailed.Mark(1)
failedNodeIDs := make([]string, 0, len(piecesReport.Failed))
offlineNodeIDs := make([]string, 0, len(piecesReport.Offline))
timedOutNodeIDs := make([]string, 0, len(piecesReport.Contained))
unknownErrs := make([]string, 0, len(piecesReport.Unknown))
for _, outcome := range piecesReport.Failed {
failedNodeIDs = append(failedNodeIDs, outcome.Piece.StorageNode.String())
}
for _, outcome := range piecesReport.Offline {
offlineNodeIDs = append(offlineNodeIDs, outcome.Piece.StorageNode.String())
}
for _, outcome := range piecesReport.Contained {
timedOutNodeIDs = append(timedOutNodeIDs, outcome.Piece.StorageNode.String())
}
for _, outcome := range piecesReport.Unknown {
// We are purposefully using the error's string here, as opposed
// to wrapping the error. It is not likely that we need the local-side
// traceback of where this error was initially wrapped, and this will
// keep the logs more readable.
unknownErrs = append(unknownErrs, fmt.Sprintf("node ID [%s] err: %v", outcome.Piece.StorageNode, outcome.Err))
}
repairer.log.Warn("irreparable segment: could not acquire enough shares",
zap.String("StreamID", queueSegment.StreamID.String()),
zap.Uint64("Position", queueSegment.Position.Encode()),
zap.Int32("piecesAvailable", irreparableErr.piecesAvailable),
zap.Int32("piecesRequired", irreparableErr.piecesRequired),
zap.Int("numFailedNodes", len(failedNodeIDs)),
zap.Stringer("failedNodes", commaSeparatedArray(failedNodeIDs)),
zap.Int("numOfflineNodes", len(offlineNodeIDs)),
zap.Stringer("offlineNodes", commaSeparatedArray(offlineNodeIDs)),
zap.Int("numTimedOutNodes", len(timedOutNodeIDs)),
zap.Stringer("timedOutNodes", commaSeparatedArray(timedOutNodeIDs)),
zap.Stringer("unknownErrors", commaSeparatedArray(unknownErrs)),
)
// repair will be attempted again if the segment remains unhealthy.
return false, nil
}
// The segment's redundancy strategy is invalid, or else there was an internal error.
return true, repairReconstructError.New("segment could not be reconstructed: %w", err)
}
defer func() { err = errs.Combine(err, segmentReader.Close()) }()
// only report audit result when segment can be successfully downloaded
cachedNodesReputation := make(map[storj.NodeID]overlay.ReputationStatus, len(cachedNodesInfo))
for id, info := range cachedNodesInfo {
cachedNodesReputation[id] = info.Reputation
}
report := audit.Report{
Segment: &segment,
NodesReputation: cachedNodesReputation,
}
for _, outcome := range piecesReport.Successful {
report.Successes = append(report.Successes, outcome.Piece.StorageNode)
}
for _, outcome := range piecesReport.Failed {
report.Fails = append(report.Fails, metabase.Piece{
StorageNode: outcome.Piece.StorageNode,
Number: outcome.Piece.Number,
})
}
for _, outcome := range piecesReport.Offline {
report.Offlines = append(report.Offlines, outcome.Piece.StorageNode)
}
for _, outcome := range piecesReport.Unknown {
report.Unknown = append(report.Unknown, outcome.Piece.StorageNode)
}
if repairer.reputationUpdateEnabled {
repairer.reporter.RecordAudits(ctx, report)
}
// Upload the repaired pieces
successfulNodes, _, err := repairer.ec.Repair(ctx, putLimits, putPrivateKey, redundancy, segmentReader, repairer.timeout, minSuccessfulNeeded)
if err != nil {
return false, repairPutError.Wrap(err)
}
pieceSize := eestream.CalcPieceSize(int64(segment.EncryptedSize), redundancy)
var bytesRepaired int64
// Add the successfully uploaded pieces to repairedPieces
var repairedPieces metabase.Pieces
repairedMap := make(map[uint16]bool)
for i, node := range successfulNodes {
if node == nil {
continue
}
bytesRepaired += pieceSize
piece := metabase.Piece{
Number: uint16(i),
StorageNode: node.Id,
}
repairedPieces = append(repairedPieces, piece)
repairedMap[uint16(i)] = true
}
mon.Meter("repair_bytes_uploaded").Mark64(bytesRepaired) //mon:locked
healthyAfterRepair := len(piecesCheck.Healthy) + len(repairedPieces)
switch {
case healthyAfterRepair >= int(segment.Redundancy.OptimalShares):
mon.Meter("repair_success").Mark(1) //mon:locked
stats.repairSuccess.Mark(1)
case healthyAfterRepair <= int(segment.Redundancy.RepairShares):
// Important: this indicates a failure to PUT enough pieces to the network to pass
// the repair threshold, and _not_ a failure to reconstruct the segment. But we
// put at least one piece, else ec.Repair() would have returned an error. So the
// repair "succeeded" in that the segment is now healthier than it was, but it is
// not as healthy as we want it to be.
mon.Meter("repair_failed").Mark(1) //mon:locked
stats.repairFailed.Mark(1)
default:
mon.Meter("repair_partial").Mark(1) //mon:locked
stats.repairPartial.Mark(1)
}
healthyRatioAfterRepair := 0.0
if segment.Redundancy.TotalShares != 0 {
healthyRatioAfterRepair = float64(healthyAfterRepair) / float64(segment.Redundancy.TotalShares)
}
mon.FloatVal("healthy_ratio_after_repair").Observe(healthyRatioAfterRepair) //mon:locked
stats.healthyRatioAfterRepair.Observe(healthyRatioAfterRepair)
var toRemove metabase.Pieces
switch {
case healthyAfterRepair >= int(segment.Redundancy.OptimalShares):
// Repair was fully successful; remove all unhealthy pieces except those in
// (Retrievable AND InExcludedCountry). Those, we allow to remain on the nodes as
// long as the nodes are keeping the pieces intact and available.
for _, piece := range pieces {
if _, isUnhealthy := piecesCheck.Unhealthy[piece.Number]; isUnhealthy {
_, retrievable := piecesCheck.Retrievable[piece.Number]
_, inExcludedCountry := piecesCheck.InExcludedCountry[piece.Number]
if retrievable && inExcludedCountry {
continue
}
toRemove = append(toRemove, piece)
}
}
case healthyAfterRepair > int(segment.Redundancy.RepairShares):
// Repair was successful enough that we still want to drop all out-of-placement
// pieces. We want to do that wherever possible, except where doing so puts data in
// jeopardy.
for _, piece := range pieces {
if _, ok := piecesCheck.OutOfPlacement[piece.Number]; ok {
toRemove = append(toRemove, piece)
}
}
default:
// Repair improved the health of the piece, but it is still at or below the
// repair threshold (not counting unhealthy-but-retrievable pieces). To be safe,
// we will keep unhealthy-but-retrievable pieces in the segment for now.
}
// in any case, we want to remove pieces for which we have replacements now.
for _, piece := range pieces {
if repairedMap[piece.Number] {
toRemove = append(toRemove, piece)
}
}
// add pieces that failed piece hash verification to the removal list
for _, outcome := range piecesReport.Failed {
toRemove = append(toRemove, outcome.Piece)
}
newPieces, err := segment.Pieces.Update(repairedPieces, toRemove)
if err != nil {
return false, repairPutError.Wrap(err)
}
err = repairer.metabase.UpdateSegmentPieces(ctx, metabase.UpdateSegmentPieces{
StreamID: segment.StreamID,
Position: segment.Position,
OldPieces: segment.Pieces,
NewRedundancy: segment.Redundancy,
NewPieces: newPieces,
NewRepairedAt: time.Now(),
})
if err != nil {
return false, metainfoPutError.Wrap(err)
}
repairedAt := time.Time{}
if segment.RepairedAt != nil {
repairedAt = *segment.RepairedAt
}
var segmentAge time.Duration
if segment.CreatedAt.Before(repairedAt) {
segmentAge = time.Since(repairedAt)
} else {
segmentAge = time.Since(segment.CreatedAt)
}
mon.IntVal("segment_time_until_repair").Observe(int64(segmentAge.Seconds())) //mon:locked
stats.segmentTimeUntilRepair.Observe(int64(segmentAge.Seconds()))
repairer.log.Debug("repaired segment",
zap.Stringer("Stream ID", segment.StreamID),
zap.Uint64("Position", segment.Position.Encode()),
zap.Int("clumped pieces", len(piecesCheck.Clumped)),
zap.Int("exiting-node pieces", len(piecesCheck.Exiting)),
zap.Int("out of placement pieces", len(piecesCheck.OutOfPlacement)),
zap.Int("in excluded countries", len(piecesCheck.InExcludedCountry)),
zap.Int("missing pieces", len(piecesCheck.Missing)),
zap.Int("removed pieces", len(toRemove)),
zap.Int("repaired pieces", len(repairedPieces)),
zap.Int("retrievable pieces", len(piecesCheck.Retrievable)),
zap.Int("healthy before repair", len(piecesCheck.Healthy)),
zap.Int("healthy after repair", healthyAfterRepair),
zap.Int("total before repair", len(piecesCheck.ExcludeNodeIDs)),
zap.Int("total after repair", len(newPieces)))
return true, nil
}
// checkIfSegmentAltered checks if oldSegment has been altered since it was selected for audit.
func (repairer *SegmentRepairer) checkIfSegmentAltered(ctx context.Context, oldSegment metabase.Segment) (err error) {
defer mon.Task()(&ctx)(&err)
if repairer.OnTestingCheckSegmentAlteredHook != nil {
repairer.OnTestingCheckSegmentAlteredHook()
}
newSegment, err := repairer.metabase.GetSegmentByPosition(ctx, metabase.GetSegmentByPosition{
StreamID: oldSegment.StreamID,
Position: oldSegment.Position,
})
if err != nil {
if metabase.ErrSegmentNotFound.Has(err) {
return segmentDeletedError.New("StreamID: %q Position: %d", oldSegment.StreamID.String(), oldSegment.Position.Encode())
}
return err
}
if !oldSegment.Pieces.Equal(newSegment.Pieces) {
return segmentModifiedError.New("StreamID: %q Position: %d", oldSegment.StreamID.String(), oldSegment.Position.Encode())
}
return nil
}
func (repairer *SegmentRepairer) getStatsByRS(redundancy *pb.RedundancyScheme) *stats {
rsString := getRSString(repairer.loadRedundancy(redundancy))
return repairer.statsCollector.getStatsByRS(rsString)
}
func (repairer *SegmentRepairer) loadRedundancy(redundancy *pb.RedundancyScheme) (int, int, int, int) {
repair := int(redundancy.RepairThreshold)
overrideValue := repairer.repairOverrides.GetOverrideValuePB(redundancy)
if overrideValue != 0 {
repair = int(overrideValue)
}
return int(redundancy.MinReq), repair, int(redundancy.SuccessThreshold), int(redundancy.Total)
}
// SetNow allows tests to have the server act as if the current time is whatever they want.
func (repairer *SegmentRepairer) SetNow(nowFn func() time.Time) {
repairer.nowFn = nowFn
}
// AdminFetchInfo groups together all the information about a piece that should be retrievable
// from storage nodes.
type AdminFetchInfo struct {
Reader io.ReadCloser
Hash *pb.PieceHash
GetLimit *pb.AddressedOrderLimit
OriginalLimit *pb.OrderLimit
FetchError error
}
// AdminFetchPieces retrieves raw pieces and the associated hashes and original order
// limits from the storage nodes on which they are stored, and returns them intact to
// the caller rather than decoding or decrypting or verifying anything. This is to be
// used for debugging purposes.
func (repairer *SegmentRepairer) AdminFetchPieces(ctx context.Context, seg *metabase.Segment, saveDir string) (pieceInfos []AdminFetchInfo, err error) {
if seg.Inline() {
return nil, errs.New("cannot download an inline segment")
}
if len(seg.Pieces) < int(seg.Redundancy.RequiredShares) {
return nil, errs.New("segment only has %d pieces; needs %d for reconstruction", seg.Pieces, seg.Redundancy.RequiredShares)
}
// we treat all pieces as "healthy" for our purposes here; we want to download as many
// of them as we reasonably can. Thus, we pass in seg.Pieces for 'healthy'
getOrderLimits, getPrivateKey, cachedNodesInfo, err := repairer.orders.CreateGetRepairOrderLimits(ctx, *seg, seg.Pieces)
if err != nil {
return nil, errs.New("could not create order limits: %w", err)
}
pieceSize := seg.PieceSize()
pieceInfos = make([]AdminFetchInfo, len(getOrderLimits))
limiter := sync2.NewLimiter(int(seg.Redundancy.RequiredShares))
for currentLimitIndex, limit := range getOrderLimits {
if limit == nil {
continue
}
pieceInfos[currentLimitIndex].GetLimit = limit
currentLimitIndex, limit := currentLimitIndex, limit
limiter.Go(ctx, func() {
info := cachedNodesInfo[limit.GetLimit().StorageNodeId]
address := limit.GetStorageNodeAddress().GetAddress()
var triedLastIPPort bool
if info.LastIPPort != "" && info.LastIPPort != address {
address = info.LastIPPort
triedLastIPPort = true
}
pieceReadCloser, hash, originalLimit, err := repairer.ec.downloadAndVerifyPiece(ctx, limit, address, getPrivateKey, saveDir, pieceSize)
// if piecestore dial with last ip:port failed try again with node address
if triedLastIPPort && piecestore.Error.Has(err) {
if pieceReadCloser != nil {
_ = pieceReadCloser.Close()
}
pieceReadCloser, hash, originalLimit, err = repairer.ec.downloadAndVerifyPiece(ctx, limit, limit.GetStorageNodeAddress().GetAddress(), getPrivateKey, saveDir, pieceSize)
}
pieceInfos[currentLimitIndex].Reader = pieceReadCloser
pieceInfos[currentLimitIndex].Hash = hash
pieceInfos[currentLimitIndex].OriginalLimit = originalLimit
pieceInfos[currentLimitIndex].FetchError = err
})
}
limiter.Wait()
return pieceInfos, nil
}
// commaSeparatedArray concatenates an array into a comma-separated string,
// lazily.
type commaSeparatedArray []string
func (c commaSeparatedArray) String() string {
return strings.Join(c, ", ")
}