storj/pkg/storage/segments/repairer.go
Ivan Fraixedes f420b29d35
[V3-1927] Repairer uploads to max threshold instead of success… (#2423)
* pkg/datarepair: Add test to check num upload pieces
  Add a new test for ensuring the number of pieces that the repair process
  upload when a segment is injured.
* satellite/orders: Don't create "put order limits" over total
  Repair must not create "put order limits" more than the total count.
* pkg/datarepair: Update upload repair pieces test
  Update the test which checks the number of pieces which are uploaded
  during a repair for using the same excess over the success threshold
  value than the implementation.
* satellites/orders: Limit repair put order for not being total
  Limit the number of put orders to be used by repair for only uploading
  pieces to a % excess over the successful threshold.
* pkg/datarepair: Change DataRepair test to pass again
  Make some changes in the DataRepair test to make pass again after the
  repair upload repaired pieces only until a % excess over success
  threshold.
  Also update the steps description of the DataRepair test after it has been
  changed, to match on what's now, besides to leave it more generic for
  avoiding having to update it on minimal future refactorings.
* satellite: Make repair excess optimal threshold configurable
  Add a new configuration parameter to the satellite for being able to
  configure the percentage excess over the optimal threshold, used for
  determining how many pieces should be repaired/uploaded, rather than
  having the value hard coded.
* repairer: Add configurable param to segments/repairer
  Add a new parameters to the segment/repairer to calculate the maximum
  number of excess nodes, based on the optimal threshold, that repaired
  pieces can be uploaded.
  This new parameter has been added for not returning more nodes than the
  number of upload orders for data repair satellite service calculate for
  repairing pieces.
* pkg/storage/ec: Update log message in clien.Repair
* satellite: Update configuration lock file
2019-07-12 00:44:47 +02:00

250 lines
7.6 KiB
Go

// Copyright (C) 2019 Storj Labs, Inc.
// See LICENSE for copying information.
package segments
import (
"context"
"math"
"time"
"github.com/zeebo/errs"
"go.uber.org/zap"
"storj.io/storj/pkg/eestream"
"storj.io/storj/pkg/identity"
"storj.io/storj/pkg/overlay"
"storj.io/storj/pkg/pb"
ecclient "storj.io/storj/pkg/storage/ec"
"storj.io/storj/pkg/storj"
"storj.io/storj/satellite/metainfo"
"storj.io/storj/satellite/orders"
)
// Repairer for segments
type Repairer struct {
log *zap.Logger
metainfo *metainfo.Service
orders *orders.Service
cache *overlay.Cache
ec ecclient.Client
identity *identity.FullIdentity
timeout time.Duration
// multiplierOptimalThreshold is the value that multiplied by the optimal
// threshold results in the maximum limit of number of nodes to upload
// repaired pieces
multiplierOptimalThreshold float64
}
// NewSegmentRepairer creates a new instance of SegmentRepairer.
//
// excessPercentageOptimalThreshold is the percentage to apply over the optimal
// threshould to determine the maximum limit of nodes to upload repaired pieces,
// when negative, 0 is applied.
func NewSegmentRepairer(
log *zap.Logger, metainfo *metainfo.Service, orders *orders.Service,
cache *overlay.Cache, ec ecclient.Client, identity *identity.FullIdentity, timeout time.Duration,
excessOptimalThreshold float64,
) *Repairer {
if excessOptimalThreshold < 0 {
excessOptimalThreshold = 0
}
return &Repairer{
log: log,
metainfo: metainfo,
orders: orders,
cache: cache,
ec: ec.WithForceErrorDetection(true),
identity: identity,
timeout: timeout,
multiplierOptimalThreshold: 1 + excessOptimalThreshold,
}
}
// Repair retrieves an at-risk segment and repairs and stores lost pieces on new nodes
func (repairer *Repairer) Repair(ctx context.Context, path storj.Path) (err error) {
defer mon.Task()(&ctx)(&err)
// Read the segment pointer from the metainfo
pointer, err := repairer.metainfo.Get(ctx, path)
if err != nil {
return Error.Wrap(err)
}
if pointer.GetType() != pb.Pointer_REMOTE {
return Error.New("cannot repair inline segment %s", path)
}
mon.Meter("repair_attempts").Mark(1)
mon.IntVal("repair_segment_size").Observe(pointer.GetSegmentSize())
redundancy, err := eestream.NewRedundancyStrategyFromProto(pointer.GetRemote().GetRedundancy())
if err != nil {
return Error.Wrap(err)
}
pieceSize := eestream.CalcPieceSize(pointer.GetSegmentSize(), redundancy)
expiration := pointer.GetExpirationDate()
var excludeNodeIDs storj.NodeIDList
var healthyPieces, unhealthyPieces []*pb.RemotePiece
healthyMap := make(map[int32]bool)
pieces := pointer.GetRemote().GetRemotePieces()
missingPieces, err := repairer.cache.GetMissingPieces(ctx, pieces)
if err != nil {
return Error.New("error getting missing pieces %s", err)
}
numHealthy := len(pieces) - len(missingPieces)
// irreparable piece, we need k+1 to detect corrupted pieces
if int32(numHealthy) < pointer.Remote.Redundancy.MinReq+1 {
mon.Meter("repair_nodes_unavailable").Mark(1)
return Error.New("segment %v cannot be repaired: only %d healthy pieces, %d required", path, numHealthy, pointer.Remote.Redundancy.MinReq+1)
}
// repair not needed
if int32(numHealthy) > pointer.Remote.Redundancy.RepairThreshold {
mon.Meter("repair_unnecessary").Mark(1)
repairer.log.Sugar().Debugf("segment %v with %d pieces above repair threshold %d", path, numHealthy, pointer.Remote.Redundancy.RepairThreshold)
return nil
}
healthyRatioBeforeRepair := 0.0
if pointer.Remote.Redundancy.Total != 0 {
healthyRatioBeforeRepair = float64(numHealthy) / float64(pointer.Remote.Redundancy.Total)
}
mon.FloatVal("healthy_ratio_before_repair").Observe(healthyRatioBeforeRepair)
lostPiecesSet := sliceToSet(missingPieces)
// Populate healthyPieces with all pieces from the pointer except those correlating to indices in lostPieces
for _, piece := range pieces {
excludeNodeIDs = append(excludeNodeIDs, piece.NodeId)
if _, ok := lostPiecesSet[piece.GetPieceNum()]; !ok {
healthyPieces = append(healthyPieces, piece)
healthyMap[piece.GetPieceNum()] = true
} else {
unhealthyPieces = append(unhealthyPieces, piece)
}
}
bucketID, err := createBucketID(path)
if err != nil {
return Error.Wrap(err)
}
// Create the order limits for the GET_REPAIR action
getOrderLimits, getPrivateKey, err := repairer.orders.CreateGetRepairOrderLimits(ctx, bucketID, pointer, healthyPieces)
if err != nil {
return Error.Wrap(err)
}
var requestCount int
{
totalNeeded := math.Ceil(float64(redundancy.OptimalThreshold()) *
repairer.multiplierOptimalThreshold,
)
requestCount = int(totalNeeded) - len(healthyPieces)
}
// Request Overlay for n-h new storage nodes
request := overlay.FindStorageNodesRequest{
RequestedCount: requestCount,
FreeBandwidth: pieceSize,
FreeDisk: pieceSize,
ExcludedNodes: excludeNodeIDs,
}
newNodes, err := repairer.cache.FindStorageNodes(ctx, request)
if err != nil {
return Error.Wrap(err)
}
// Create the order limits for the PUT_REPAIR action
putLimits, putPrivateKey, err := repairer.orders.CreatePutRepairOrderLimits(ctx, bucketID, pointer, getOrderLimits, newNodes)
if err != nil {
return Error.Wrap(err)
}
// Download the segment using just the healthy pieces
rr, err := repairer.ec.Get(ctx, getOrderLimits, getPrivateKey, redundancy, pointer.GetSegmentSize())
if err != nil {
return Error.Wrap(err)
}
r, err := rr.Range(ctx, 0, rr.Size())
if err != nil {
return Error.Wrap(err)
}
defer func() { err = errs.Combine(err, r.Close()) }()
// Upload the repaired pieces
successfulNodes, hashes, err := repairer.ec.Repair(ctx, putLimits, putPrivateKey, redundancy, r, expiration, repairer.timeout, path)
if err != nil {
return Error.Wrap(err)
}
// Add the successfully uploaded pieces to the healthyPieces
for i, node := range successfulNodes {
if node == nil {
continue
}
healthyPieces = append(healthyPieces, &pb.RemotePiece{
PieceNum: int32(i),
NodeId: node.Id,
Hash: hashes[i],
})
healthyMap[int32(i)] = true
}
healthyLength := int32(len(healthyPieces))
switch {
case healthyLength <= pointer.Remote.Redundancy.RepairThreshold:
mon.Meter("repair_failed").Mark(1)
case healthyLength < pointer.Remote.Redundancy.SuccessThreshold:
mon.Meter("repair_partial").Mark(1)
default:
mon.Meter("repair_success").Mark(1)
}
healthyRatioAfterRepair := 0.0
if pointer.Remote.Redundancy.Total != 0 {
healthyRatioAfterRepair = float64(healthyLength) / float64(pointer.Remote.Redundancy.Total)
}
mon.FloatVal("healthy_ratio_after_repair").Observe(healthyRatioAfterRepair)
// if partial repair, include "unhealthy" pieces that are not duplicates
if healthyLength < pointer.Remote.Redundancy.SuccessThreshold {
for _, p := range unhealthyPieces {
if _, ok := healthyMap[p.GetPieceNum()]; !ok {
healthyPieces = append(healthyPieces, p)
}
}
}
// Update the remote pieces in the pointer
pointer.GetRemote().RemotePieces = healthyPieces
// Update the segment pointer in the metainfo
return repairer.metainfo.Put(ctx, path, pointer)
}
// sliceToSet converts the given slice to a set
func sliceToSet(slice []int32) map[int32]struct{} {
set := make(map[int32]struct{}, len(slice))
for _, value := range slice {
set[value] = struct{}{}
}
return set
}
func createBucketID(path storj.Path) ([]byte, error) {
comps := storj.SplitPath(path)
if len(comps) < 3 {
return nil, Error.New("no bucket component in path: %s", path)
}
return []byte(storj.JoinPaths(comps[0], comps[2])), nil
}