storj/satellite/repair/checker/online.go
Michal Niewrzal de4559d862 satellite/repair/checker: optimize processing, part 1
Optimization by reusing more slices.

Benchmark result:
name                                       old time/op    new time/op    delta
RemoteSegment/healthy_segment-8    33.2µs ± 1%    31.4µs ± 6%   -5.49%  (p=0.032 n=4+5)

name                                       old alloc/op   new alloc/op   delta
RemoteSegment/healthy_segment-8    15.9kB ± 0%    10.2kB ± 0%  -35.92%  (p=0.008 n=5+5)

name                                       old allocs/op  new allocs/op  delta
RemoteSegment/healthy_segment-8       280 ± 0%       250 ± 0%  -10.71%  (p=0.008 n=5+5)

Change-Id: I60462169285462dee6cd16d4f4ce1f30fb6cdfdf
2023-10-11 15:50:29 +00:00

143 lines
4.7 KiB
Go

// Copyright (C) 2019 Storj Labs, Inc.
// See LICENSE for copying information.
package checker
import (
"context"
"sync"
"sync/atomic"
"time"
"github.com/zeebo/errs"
"storj.io/common/storj"
"storj.io/storj/satellite/nodeselection"
"storj.io/storj/satellite/overlay"
)
// ReliabilityCache caches known nodes for the specified staleness duration
// and updates automatically from overlay.
//
// architecture: Service
type ReliabilityCache struct {
overlay *overlay.Service
staleness time.Duration
mu sync.Mutex
state atomic.Value // contains immutable *reliabilityState
}
// reliabilityState.
type reliabilityState struct {
nodeByID map[storj.NodeID]nodeselection.SelectedNode
created time.Time
}
// NewReliabilityCache creates a new reliability checking cache.
func NewReliabilityCache(overlay *overlay.Service, staleness time.Duration) *ReliabilityCache {
return &ReliabilityCache{
overlay: overlay,
staleness: staleness,
}
}
// LastUpdate returns when the cache was last updated, or the zero value (time.Time{}) if it
// has never yet been updated. LastUpdate() does not trigger an update itself.
func (cache *ReliabilityCache) LastUpdate() time.Time {
if state, ok := cache.state.Load().(*reliabilityState); ok {
return state.created
}
return time.Time{}
}
// NumNodes returns the number of online active nodes (as determined by the reliability cache).
// This number is not guaranteed to be consistent with either the nodes database or the
// reliability cache after returning; it is just a best-effort count and should be treated as an
// estimate.
func (cache *ReliabilityCache) NumNodes(ctx context.Context) (numNodes int, err error) {
state, err := cache.loadFast(ctx, time.Time{})
if err != nil {
return 0, err
}
return len(state.nodeByID), nil
}
// GetNodes gets the cached SelectedNode records (valid as of the given time) for each of
// the requested node IDs, and returns them in order. If a node is not in the reliability
// cache (that is, it is unknown or disqualified), an empty SelectedNode will be returned
// for the index corresponding to that node ID.
// Slice selectedNodes will be filled with results nodes and returned. It's length must be
// equal to nodeIDs slice.
func (cache *ReliabilityCache) GetNodes(ctx context.Context, validUpTo time.Time, nodeIDs []storj.NodeID, selectedNodes []nodeselection.SelectedNode) ([]nodeselection.SelectedNode, error) {
state, err := cache.loadFast(ctx, validUpTo)
if err != nil {
return nil, err
}
if len(nodeIDs) != len(selectedNodes) {
return nil, errs.New("nodeIDs length must be equal to selectedNodes: want %d have %d", len(nodeIDs), len(selectedNodes))
}
for i, nodeID := range nodeIDs {
selectedNodes[i] = state.nodeByID[nodeID]
}
return selectedNodes, nil
}
func (cache *ReliabilityCache) loadFast(ctx context.Context, validUpTo time.Time) (_ *reliabilityState, err error) {
// This code is designed to be very fast in the case where a refresh is not needed: just an
// atomic load from rarely written to bit of shared memory. The general strategy is to first
// read if the state suffices to answer the query. If not (due to it not existing, being
// too stale, etc.), then we acquire the mutex to block other requests that may be stale
// and ensure we only issue one refresh at a time. After acquiring the mutex, we have to
// double check that the state is still stale because some other call may have beat us to
// the acquisition. Only then do we refresh and can then proceed answering the query.
state, ok := cache.state.Load().(*reliabilityState)
if !ok || validUpTo.After(state.created) || time.Since(state.created) > cache.staleness {
cache.mu.Lock()
state, ok = cache.state.Load().(*reliabilityState)
if !ok || validUpTo.After(state.created) || time.Since(state.created) > cache.staleness {
state, err = cache.refreshLocked(ctx)
}
cache.mu.Unlock()
if err != nil {
return nil, err
}
}
return state, nil
}
// Refresh refreshes the cache.
func (cache *ReliabilityCache) Refresh(ctx context.Context) (err error) {
defer mon.Task()(&ctx)(&err)
cache.mu.Lock()
defer cache.mu.Unlock()
_, err = cache.refreshLocked(ctx)
return err
}
// refreshLocked does the refreshes assuming the write mutex is held.
func (cache *ReliabilityCache) refreshLocked(ctx context.Context) (_ *reliabilityState, err error) {
defer mon.Task()(&ctx)(&err)
selectedNodes, err := cache.overlay.GetParticipatingNodes(ctx)
if err != nil {
return nil, Error.Wrap(err)
}
state := &reliabilityState{
created: time.Now(),
nodeByID: make(map[storj.NodeID]nodeselection.SelectedNode, len(selectedNodes)),
}
for _, node := range selectedNodes {
state.nodeByID[node.ID] = node
}
cache.state.Store(state)
return state, nil
}