storj/satellite/repair/repairer/segments.go
Michał Niewrzał a93e47514a satellite: remove irreparabledb
This is part of metaloop refactoring. We plan to remove
irreparable at some point but there was not time for it.
Now instead refatoring it for segmentloop its just easier
to drop it.

Later we still need to drop table with migration step.

Change-Id: I270e77f119273d39a1ecdcf5e1c37a5662a29ab4
2021-06-17 07:20:15 +00:00

514 lines
18 KiB
Go

// Copyright (C) 2019 Storj Labs, Inc.
// See LICENSE for copying information.
package repairer
import (
"context"
"errors"
"fmt"
"math"
"sort"
"time"
"github.com/zeebo/errs"
"go.uber.org/zap"
"storj.io/common/pb"
"storj.io/common/rpc"
"storj.io/common/signing"
"storj.io/common/storj"
"storj.io/storj/satellite/metabase"
"storj.io/storj/satellite/orders"
"storj.io/storj/satellite/overlay"
"storj.io/storj/satellite/repair/checker"
"storj.io/uplink/private/eestream"
)
var (
metainfoGetError = errs.Class("metainfo db get")
metainfoPutError = errs.Class("metainfo db put")
invalidRepairError = errs.Class("invalid repair")
overlayQueryError = errs.Class("overlay query failure")
orderLimitFailureError = errs.Class("order limits failure")
repairReconstructError = errs.Class("repair reconstruction failure")
repairPutError = errs.Class("repair could not store repaired pieces")
)
// irreparableError identifies situations where a segment could not be repaired due to reasons
// which are hopefully transient (e.g. too many pieces unavailable). The segment should be added
// to the irreparableDB.
type irreparableError struct {
path storj.Path
piecesAvailable int32
piecesRequired int32
}
func (ie *irreparableError) Error() string {
return fmt.Sprintf("%d available pieces < %d required", ie.piecesAvailable, ie.piecesRequired)
}
// SegmentRepairer for segments.
type SegmentRepairer struct {
log *zap.Logger
statsCollector *statsCollector
metabase *metabase.DB
orders *orders.Service
overlay *overlay.Service
ec *ECRepairer
timeout time.Duration
// multiplierOptimalThreshold is the value that multiplied by the optimal
// threshold results in the maximum limit of number of nodes to upload
// repaired pieces
multiplierOptimalThreshold float64
// repairOverrides is the set of values configured by the checker to override the repair threshold for various RS schemes.
repairOverrides checker.RepairOverridesMap
nowFn func() time.Time
}
// NewSegmentRepairer creates a new instance of SegmentRepairer.
//
// excessPercentageOptimalThreshold is the percentage to apply over the optimal
// threshould to determine the maximum limit of nodes to upload repaired pieces,
// when negative, 0 is applied.
func NewSegmentRepairer(
log *zap.Logger, metabase *metabase.DB, orders *orders.Service,
overlay *overlay.Service, dialer rpc.Dialer, timeout time.Duration,
excessOptimalThreshold float64, repairOverrides checker.RepairOverrides,
downloadTimeout time.Duration, inMemoryRepair bool,
satelliteSignee signing.Signee,
) *SegmentRepairer {
if excessOptimalThreshold < 0 {
excessOptimalThreshold = 0
}
return &SegmentRepairer{
log: log,
statsCollector: newStatsCollector(),
metabase: metabase,
orders: orders,
overlay: overlay,
ec: NewECRepairer(log.Named("ec repairer"), dialer, satelliteSignee, downloadTimeout, inMemoryRepair),
timeout: timeout,
multiplierOptimalThreshold: 1 + excessOptimalThreshold,
repairOverrides: repairOverrides.GetMap(),
nowFn: time.Now,
}
}
// Repair retrieves an at-risk segment and repairs and stores lost pieces on new nodes
// note that shouldDelete is used even in the case where err is not null
// note that it will update audit status as failed for nodes that failed piece hash verification during repair downloading.
func (repairer *SegmentRepairer) Repair(ctx context.Context, path storj.Path) (shouldDelete bool, err error) {
defer mon.Task()(&ctx, path)(&err)
// TODO extend InjuredSegment with StreamID/Position and replace path
segmentLocation, err := metabase.ParseSegmentKey(metabase.SegmentKey(path))
if err != nil {
return false, metainfoGetError.Wrap(err)
}
// TODO we should replace GetSegmentByLocation with GetSegmentByPosition when
// we refactor the repair queue to store metabase.SegmentPosition instead of storj.Path.
segment, err := repairer.metabase.GetSegmentByLocation(ctx, metabase.GetSegmentByLocation{
SegmentLocation: segmentLocation,
})
if err != nil {
if storj.ErrObjectNotFound.Has(err) {
mon.Meter("repair_unnecessary").Mark(1) //mon:locked
mon.Meter("segment_deleted_before_repair").Mark(1) //mon:locked
repairer.log.Debug("segment was deleted")
return true, nil
}
return false, metainfoGetError.Wrap(err)
}
if segment.Inline() {
return true, invalidRepairError.New("cannot repair inline segment")
}
redundancy, err := eestream.NewRedundancyStrategyFromStorj(segment.Redundancy)
if err != nil {
return true, invalidRepairError.New("invalid redundancy strategy: %w", err)
}
stats := repairer.getStatsByRS(&pb.RedundancyScheme{
Type: pb.RedundancyScheme_SchemeType(segment.Redundancy.Algorithm),
ErasureShareSize: segment.Redundancy.ShareSize,
MinReq: int32(segment.Redundancy.RequiredShares),
RepairThreshold: int32(segment.Redundancy.RepairShares),
SuccessThreshold: int32(segment.Redundancy.OptimalShares),
Total: int32(segment.Redundancy.TotalShares),
})
mon.Meter("repair_attempts").Mark(1) //mon:locked
stats.repairAttempts.Mark(1)
mon.IntVal("repair_segment_size").Observe(int64(segment.EncryptedSize)) //mon:locked
stats.repairSegmentSize.Observe(int64(segment.EncryptedSize))
var excludeNodeIDs storj.NodeIDList
pieces := segment.Pieces
missingPieces, err := repairer.overlay.GetMissingPieces(ctx, pieces)
if err != nil {
return false, overlayQueryError.New("error identifying missing pieces: %w", err)
}
numHealthy := len(pieces) - len(missingPieces)
// irreparable piece
if numHealthy < int(segment.Redundancy.RequiredShares) {
mon.Counter("repairer_segments_below_min_req").Inc(1) //mon:locked
stats.repairerSegmentsBelowMinReq.Inc(1)
mon.Meter("repair_nodes_unavailable").Mark(1) //mon:locked
stats.repairerNodesUnavailable.Mark(1)
repairer.log.Warn("irreparable segment",
zap.String("path", path),
zap.Int("piecesAvailable", numHealthy),
zap.Int16("piecesRequired", segment.Redundancy.RequiredShares),
)
return false, nil
}
// ensure we get values, even if only zero values, so that redash can have an alert based on this
mon.Counter("repairer_segments_below_min_req").Inc(0) //mon:locked
stats.repairerSegmentsBelowMinReq.Inc(0)
repairThreshold := int32(segment.Redundancy.RepairShares)
pbRedundancy := &pb.RedundancyScheme{
MinReq: int32(segment.Redundancy.RequiredShares),
RepairThreshold: int32(segment.Redundancy.RepairShares),
SuccessThreshold: int32(segment.Redundancy.OptimalShares),
Total: int32(segment.Redundancy.TotalShares),
}
overrideValue := repairer.repairOverrides.GetOverrideValuePB(pbRedundancy)
if overrideValue != 0 {
repairThreshold = overrideValue
}
// repair not needed
if numHealthy > int(repairThreshold) {
mon.Meter("repair_unnecessary").Mark(1) //mon:locked
stats.repairUnnecessary.Mark(1)
repairer.log.Debug("segment above repair threshold", zap.Int("numHealthy", numHealthy), zap.Int32("repairThreshold", repairThreshold))
return true, nil
}
healthyRatioBeforeRepair := 0.0
if segment.Redundancy.TotalShares != 0 {
healthyRatioBeforeRepair = float64(numHealthy) / float64(segment.Redundancy.TotalShares)
}
mon.FloatVal("healthy_ratio_before_repair").Observe(healthyRatioBeforeRepair) //mon:locked
stats.healthyRatioBeforeRepair.Observe(healthyRatioBeforeRepair)
lostPiecesSet := sliceToSet(missingPieces)
var healthyPieces, unhealthyPieces metabase.Pieces
healthyMap := make(map[uint16]bool)
// Populate healthyPieces with all pieces from the segment except those correlating to indices in lostPieces
for _, piece := range pieces {
excludeNodeIDs = append(excludeNodeIDs, piece.StorageNode)
if !lostPiecesSet[piece.Number] {
healthyPieces = append(healthyPieces, piece)
healthyMap[piece.Number] = true
} else {
unhealthyPieces = append(unhealthyPieces, piece)
}
}
bucket := segmentLocation.Bucket()
// Create the order limits for the GET_REPAIR action
getOrderLimits, getPrivateKey, err := repairer.orders.CreateGetRepairOrderLimits(ctx, bucket, segment, healthyPieces)
if err != nil {
return false, orderLimitFailureError.New("could not create GET_REPAIR order limits: %w", err)
}
// Double check for healthy pieces which became unhealthy inside CreateGetRepairOrderLimits
// Remove them from healthyPieces and add them to unhealthyPieces
var newHealthyPieces metabase.Pieces
for _, piece := range healthyPieces {
if getOrderLimits[piece.Number] == nil {
unhealthyPieces = append(unhealthyPieces, piece)
} else {
newHealthyPieces = append(newHealthyPieces, piece)
}
}
healthyPieces = newHealthyPieces
var requestCount int
var minSuccessfulNeeded int
{
totalNeeded := math.Ceil(float64(redundancy.OptimalThreshold()) * repairer.multiplierOptimalThreshold)
requestCount = int(totalNeeded) - len(healthyPieces)
minSuccessfulNeeded = redundancy.OptimalThreshold() - len(healthyPieces)
}
// Request Overlay for n-h new storage nodes
request := overlay.FindStorageNodesRequest{
RequestedCount: requestCount,
ExcludedIDs: excludeNodeIDs,
}
newNodes, err := repairer.overlay.FindStorageNodesForUpload(ctx, request)
if err != nil {
return false, overlayQueryError.Wrap(err)
}
// Create the order limits for the PUT_REPAIR action
putLimits, putPrivateKey, err := repairer.orders.CreatePutRepairOrderLimits(ctx, bucket, segment, getOrderLimits, newNodes, repairer.multiplierOptimalThreshold)
if err != nil {
return false, orderLimitFailureError.New("could not create PUT_REPAIR order limits: %w", err)
}
// Download the segment using just the healthy pieces
segmentReader, pbFailedPieces, err := repairer.ec.Get(ctx, getOrderLimits, getPrivateKey, redundancy, int64(segment.EncryptedSize), path)
// Populate node IDs that failed piece hashes verification
var failedNodeIDs storj.NodeIDList
for _, piece := range pbFailedPieces {
failedNodeIDs = append(failedNodeIDs, piece.NodeId)
}
// TODO refactor repairer.ec.Get?
failedPieces := make(metabase.Pieces, len(pbFailedPieces))
for i, piece := range pbFailedPieces {
failedPieces[i] = metabase.Piece{
Number: uint16(piece.PieceNum),
StorageNode: piece.NodeId,
}
}
// update audit status for nodes that failed piece hash verification during downloading
failedNum, updateErr := repairer.updateAuditFailStatus(ctx, failedNodeIDs)
if updateErr != nil || failedNum > 0 {
// failed updates should not affect repair, therefore we will not return the error
repairer.log.Debug("failed to update audit fail status", zap.Int("Failed Update Number", failedNum), zap.Error(updateErr))
}
if err != nil {
// If the context was closed during the Get phase, it will appear here as though
// we just failed to download enough pieces to reconstruct the segment. Check for
// a closed context before doing any further error processing.
if ctxErr := ctx.Err(); ctxErr != nil {
return false, ctxErr
}
// If Get failed because of input validation, then it will keep failing. But if it
// gave us irreparableError, then we failed to download enough pieces and must try
// to wait for nodes to come back online.
var irreparableErr *irreparableError
if errors.As(err, &irreparableErr) {
mon.Meter("repair_too_many_nodes_failed").Mark(1) //mon:locked
stats.repairTooManyNodesFailed.Mark(1)
repairer.log.Warn("irreparable segment",
zap.String("path", irreparableErr.path),
zap.Int32("piecesAvailable", irreparableErr.piecesAvailable),
zap.Int32("piecesRequired", irreparableErr.piecesRequired),
)
return false, nil
}
// The segment's redundancy strategy is invalid, or else there was an internal error.
return true, repairReconstructError.New("segment could not be reconstructed: %w", err)
}
defer func() { err = errs.Combine(err, segmentReader.Close()) }()
// Upload the repaired pieces
successfulNodes, _, err := repairer.ec.Repair(ctx, putLimits, putPrivateKey, redundancy, segmentReader, repairer.timeout, path, minSuccessfulNeeded)
if err != nil {
return false, repairPutError.Wrap(err)
}
// Add the successfully uploaded pieces to repairedPieces
var repairedPieces metabase.Pieces
repairedMap := make(map[uint16]bool)
for i, node := range successfulNodes {
if node == nil {
continue
}
piece := metabase.Piece{
Number: uint16(i),
StorageNode: node.Id,
}
repairedPieces = append(repairedPieces, piece)
repairedMap[uint16(i)] = true
}
healthyAfterRepair := len(healthyPieces) + len(repairedPieces)
switch {
case healthyAfterRepair <= int(segment.Redundancy.RepairShares):
// Important: this indicates a failure to PUT enough pieces to the network to pass
// the repair threshold, and _not_ a failure to reconstruct the segment. But we
// put at least one piece, else ec.Repair() would have returned an error. So the
// repair "succeeded" in that the segment is now healthier than it was, but it is
// not as healthy as we want it to be.
mon.Meter("repair_failed").Mark(1) //mon:locked
stats.repairFailed.Mark(1)
case healthyAfterRepair < int(segment.Redundancy.OptimalShares):
mon.Meter("repair_partial").Mark(1) //mon:locked
stats.repairPartial.Mark(1)
default:
mon.Meter("repair_success").Mark(1) //mon:locked
stats.repairSuccess.Mark(1)
}
healthyRatioAfterRepair := 0.0
if segment.Redundancy.TotalShares != 0 {
healthyRatioAfterRepair = float64(healthyAfterRepair) / float64(segment.Redundancy.TotalShares)
}
mon.FloatVal("healthy_ratio_after_repair").Observe(healthyRatioAfterRepair) //mon:locked
stats.healthyRatioAfterRepair.Observe(healthyRatioAfterRepair)
var toRemove metabase.Pieces
if healthyAfterRepair >= int(segment.Redundancy.OptimalShares) {
// if full repair, remove all unhealthy pieces
toRemove = unhealthyPieces
} else {
// if partial repair, leave unrepaired unhealthy pieces in the pointer
for _, piece := range unhealthyPieces {
if repairedMap[piece.Number] {
// add only repaired pieces in the slice, unrepaired
// unhealthy pieces are not removed from the pointer
toRemove = append(toRemove, piece)
}
}
}
// add pieces that failed piece hashes verification to the removal list
toRemove = append(toRemove, failedPieces...)
newPieces, err := updatePieces(segment.Pieces, repairedPieces, toRemove)
if err != nil {
return false, repairPutError.Wrap(err)
}
err = repairer.metabase.UpdateSegmentPieces(ctx, metabase.UpdateSegmentPieces{
StreamID: segment.StreamID,
Position: segmentLocation.Position,
OldPieces: segment.Pieces,
NewRedundancy: segment.Redundancy,
NewPieces: newPieces,
NewRepairedAt: time.Now(),
})
if err != nil {
return false, metainfoPutError.Wrap(err)
}
createdAt := time.Time{}
if segment.CreatedAt != nil {
createdAt = *segment.CreatedAt
}
repairedAt := time.Time{}
if segment.RepairedAt != nil {
repairedAt = *segment.RepairedAt
}
var segmentAge time.Duration
if createdAt.Before(repairedAt) {
segmentAge = time.Since(repairedAt)
} else {
segmentAge = time.Since(createdAt)
}
// TODO what to do with RepairCount
var repairCount int64
// pointer.RepairCount++
mon.IntVal("segment_time_until_repair").Observe(int64(segmentAge.Seconds())) //mon:locked
stats.segmentTimeUntilRepair.Observe((int64(segmentAge.Seconds())))
mon.IntVal("segment_repair_count").Observe(repairCount) //mon:locked
stats.segmentRepairCount.Observe(repairCount)
return true, nil
}
func updatePieces(orignalPieces, toAddPieces, toRemovePieces metabase.Pieces) (metabase.Pieces, error) {
pieceMap := make(map[uint16]metabase.Piece)
for _, piece := range orignalPieces {
pieceMap[piece.Number] = piece
}
// remove the toRemove pieces from the map
// only if all piece number, node id match
for _, piece := range toRemovePieces {
if piece == (metabase.Piece{}) {
continue
}
existing := pieceMap[piece.Number]
if existing != (metabase.Piece{}) && existing.StorageNode == piece.StorageNode {
delete(pieceMap, piece.Number)
}
}
// add the pieces to the map
for _, piece := range toAddPieces {
if piece == (metabase.Piece{}) {
continue
}
_, exists := pieceMap[piece.Number]
if exists {
return metabase.Pieces{}, Error.New("piece to add already exists (piece no: %d)", piece.Number)
}
pieceMap[piece.Number] = piece
}
newPieces := make(metabase.Pieces, 0, len(pieceMap))
for _, piece := range pieceMap {
newPieces = append(newPieces, piece)
}
sort.Sort(newPieces)
return newPieces, nil
}
func (repairer *SegmentRepairer) getStatsByRS(redundancy *pb.RedundancyScheme) *stats {
rsString := getRSString(repairer.loadRedundancy(redundancy))
return repairer.statsCollector.getStatsByRS(rsString)
}
func (repairer *SegmentRepairer) loadRedundancy(redundancy *pb.RedundancyScheme) (int, int, int, int) {
repair := int(redundancy.RepairThreshold)
overrideValue := repairer.repairOverrides.GetOverrideValuePB(redundancy)
if overrideValue != 0 {
repair = int(overrideValue)
}
return int(redundancy.MinReq), repair, int(redundancy.SuccessThreshold), int(redundancy.Total)
}
func (repairer *SegmentRepairer) updateAuditFailStatus(ctx context.Context, failedAuditNodeIDs storj.NodeIDList) (failedNum int, err error) {
updateRequests := make([]*overlay.UpdateRequest, len(failedAuditNodeIDs))
for i, nodeID := range failedAuditNodeIDs {
updateRequests[i] = &overlay.UpdateRequest{
NodeID: nodeID,
AuditOutcome: overlay.AuditFailure,
}
}
if len(updateRequests) > 0 {
failed, err := repairer.overlay.BatchUpdateStats(ctx, updateRequests)
if err != nil || len(failed) > 0 {
return len(failed), errs.Combine(Error.New("failed to update some audit fail statuses in overlay"), err)
}
}
return 0, nil
}
// SetNow allows tests to have the server act as if the current time is whatever they want.
func (repairer *SegmentRepairer) SetNow(nowFn func() time.Time) {
repairer.nowFn = nowFn
}
// sliceToSet converts the given slice to a set.
func sliceToSet(slice []uint16) map[uint16]bool {
set := make(map[uint16]bool, len(slice))
for _, value := range slice {
set[value] = true
}
return set
}