// Copyright (C) 2019 Storj Labs, Inc. // See LICENSE for copying information. package checker import ( "context" "sync" "sync/atomic" "time" "storj.io/common/pb" "storj.io/common/storj" "storj.io/storj/satellite/overlay" ) // ReliabilityCache caches the reliable nodes for the specified staleness duration // and updates automatically from overlay. // // architecture: Service type ReliabilityCache struct { overlay *overlay.Service staleness time.Duration mu sync.Mutex state atomic.Value // contains immutable *reliabilityState } // reliabilityState. type reliabilityState struct { reliable map[storj.NodeID]struct{} created time.Time } // NewReliabilityCache creates a new reliability checking cache. func NewReliabilityCache(overlay *overlay.Service, staleness time.Duration) *ReliabilityCache { return &ReliabilityCache{ overlay: overlay, staleness: staleness, } } // LastUpdate returns when the cache was last updated. func (cache *ReliabilityCache) LastUpdate() time.Time { if state, ok := cache.state.Load().(*reliabilityState); ok { return state.created } return time.Time{} } // MissingPieces returns piece indices that are unreliable with the given staleness period. func (cache *ReliabilityCache) MissingPieces(ctx context.Context, created time.Time, pieces []*pb.RemotePiece) (_ []int32, err error) { defer mon.Task()(&ctx)(&err) // This code is designed to be very fast in the case where a refresh is not needed: just an // atomic load from rarely written to bit of shared memory. The general strategy is to first // read if the state suffices to answer the query. If not (due to it not existing, being // too stale, etc.), then we acquire the mutex to block other requests that may be stale // and ensure we only issue one refresh at a time. After acquiring the mutex, we have to // double check that the state is still stale because some other call may have beat us to // the acquisition. Only then do we refresh and can then proceed answering the query. state, ok := cache.state.Load().(*reliabilityState) if !ok || created.After(state.created) || time.Since(state.created) > cache.staleness { cache.mu.Lock() state, ok = cache.state.Load().(*reliabilityState) if !ok || created.After(state.created) || time.Since(state.created) > cache.staleness { state, err = cache.refreshLocked(ctx) } cache.mu.Unlock() if err != nil { return nil, err } } var unreliable []int32 for _, piece := range pieces { if _, ok := state.reliable[piece.NodeId]; !ok { unreliable = append(unreliable, piece.PieceNum) } } return unreliable, nil } // Refresh refreshes the cache. func (cache *ReliabilityCache) Refresh(ctx context.Context) (err error) { defer mon.Task()(&ctx)(&err) cache.mu.Lock() defer cache.mu.Unlock() _, err = cache.refreshLocked(ctx) return err } // refreshLocked does the refreshes assuming the write mutex is held. func (cache *ReliabilityCache) refreshLocked(ctx context.Context) (_ *reliabilityState, err error) { defer mon.Task()(&ctx)(&err) nodes, err := cache.overlay.Reliable(ctx) if err != nil { return nil, Error.Wrap(err) } state := &reliabilityState{ created: time.Now(), reliable: make(map[storj.NodeID]struct{}, len(nodes)), } for _, id := range nodes { state.reliable[id] = struct{}{} } cache.state.Store(state) return state, nil }