Rather than having a single repair override value, we will now support
repair override values based on a particular segment's RS scheme.
The new format for RS override values is
"k/o/n-override,k/o/n-override..."
Change-Id: Ieb422638446ef3a9357d59b2d279ee941367604d
We plan to add support for a new Reed-Solomon scheme soon, but our
repair queue orders segments by least number of healthy pieces first.
With a second RS scheme, fewer healthy pieces will not necessarily
correlate to lower health.
This change just adds the new column in a migration. A separate change
will add the new health function.
Right now, since we only support one RS scheme, behavior will not
change. Number of healthy pieces is being inserted as "segment health"
until the new health function is merged.
Segment health is calculated with a new priority function created in
commit 3e5640359. In order to use the function, a new config value is
added, called NodeFailureRate, representing the approximate probability
of any individual node going down in the duration of one checker run.
Change-Id: I51c4202203faf52528d923befbe886dbf86d02f2
The current monkit reporting for "remote_segments_lost" is not usable for
triggering alerts, as it has reported no data. To allow alerting, two new
metrics "checker_segments_below_min_req" and "repairer_segments_below_min_req"
will increment by zero on each segment unless it is below the minimum
required piece count. The two metrics report what is found by the checker
and the repairer respectively.
Change-Id: I98a68bb189eaf68a833d25cf5db9e68df535b9d7
A change was made to use a metabase.SegmentKey (a byte slice alias)
as the last seen item to iterate through the irreparable DB in a
for loop. However, this SegmentKey was not initialized, thus it was
nil. This caused the DB query to return nothing, and healthy segments
could not be cleaned out of the irreparable DB.
Change-Id: Idb30d6fef6113a30a27158d548f62c7443e65a81
As part of the Metainfo Refactoring, we need to make the Metainfo Loop
working with both the current PointerDB and the new Metabase. Thus, the
Metainfo Loop should pass to the Observer interface more specific Object
and Segment types instead of pb.Pointer.
After this change, there are still a couple of use cases that require
access to the pb.Pointer (hence we have it as a field in the
metainfo.Segment type):
1. Expired Deletion Service
2. Repair Service
It would require additional refactoring in these two services before we
are able to clean this.
Change-Id: Ib3eb6b7507ed89d5ba745ffbb6b37524ef10ed9f
Repair workers prioritize the most unhealthy segments. This has the consequence that when we
finally begin to reach the end of the queue, a good portion of the remaining segments are
healthy again as their nodes have come back online. This makes it appear that there are more
injured segments than there actually are.
solution:
Any time the checker observes an injured segment it inserts it into the repair queue or
updates it if it already exists. Therefore, we can determine which segments are no longer
injured if they were not inserted or updated by the last checker iteration. To do this we
add a new column to the injured segments table, updated_at, which is set to the current time
when a segment is inserted or updated. At the end of the checker iteration, we can delete any
items where updated_at < checker start.
Change-Id: I76a98487a4a845fab2fbc677638a732a95057a94
Another change which is a part of refactoring to replace path parameter
(string/[]byte) with key paramter (metabase.SegmentKey)
Change-Id: I617878442442e5d59bbe5c995f913c3c93c16928
* add monkit stat new_remote_segments_needing_repair, which reports the
number of new unhealthy segments in the repair queue since the previous
checker iteration
Change-Id: I2f10266006fdd6406ece50f4759b91382059dcc3
* Delete expired segments in expired segments service using metainfo
loop
* Add test to verify expired segments service deletes expired segments
* Ignore expired segments in checker observer
* Modify checker tests to verify that expired segments are ignored
* Ignore expired segments in segment repairer and drop from repair queue
* Add repair test to verify that a segment that expires after being
added to the repair queue is ignored and dropped from the repair queue
Change-Id: Ib2b0934db525fef58325583d2a7ca859b88ea60d
In production, the satellite is overriding the default repair threshold
(35) to a higher value (52). In some places in the checker and
irreparable processes, the repair threshold on the redundancy scheme is
used in place of the override value. This fixes those cases.
Change-Id: Ie7387217d9fb3886f050b5e5b67be51f276196de
Add a column to the repair queue table in the satellite db for healthy
piece count. When an item is selected from the repair queue, the least
durable segment that has not been attempted in the past hour should be
selected first. This prevents our repairer from getting stuck doing work
on segments that are close to the repair threshold while allowing
segments that are more unhealthy to degrade further.
The migration also clears the repair queue so that the migration runs
quickly and we can properly account for segment health in future repair
work.
We do not select items off the repair queue that have been attempted in
the past six hours. This was changed from on hour to allow us time to
try a wider variety of segments when the repair queue is very large.
Change-Id: Iaf183f1e5fd45cd792a52e3563a3e43a2b9f410b
this commit updates our monkit dependency to the v3 version where
it outputs in an influx style. this makes discovery much easier
as many tools are built to look at it this way.
graphite and rothko will suffer some due to no longer being a tree
based on dots. hopefully time will exist to update rothko to
index based on the new metric format.
it adds an influx output for the statreceiver so that we can
write to influxdb v1 or v2 directly.
Change-Id: Iae9f9494a6d29cfbd1f932a5e71a891b490415ff
* add outline for ECRepairer
* add description of process in TODO comments
* begin download/getting hash for a single piece
* verify piece hash and order limit during download
* fix download piece
* begin filling out ESREpair. Get
* wip move ecclient.Repair to ecrepairer.Repair
* pass satellite signee into repairer
* reconstruct original stripe from pieces
* move rebuildStripe()
* calculate piece size differently, increment successful count
* fix shares slices initialization
* rename stripeData to segment
* do not pad reader in Repair()
* temp debug
* create unsafeRSScheme
* use decode reader
* rename file name to be all lowercase
* make repair downloader async
* declare condition variable inside Get method
* set downloadAndVerifyPiece's in-memory buffer to be share size
* update unusedLimits var
* address comments
* remove unnecessary comments
* move initialization of segmentRepaire to be outside of repairer service
* use ReadAll during download
* remove dots and move hashing to after validating for order limit signature
* wip test
* make sure files exactly at min threshold are repaired
* remove unused code
* use corrput data and write back to storagenode
* only create corrupted node and piece ids once
* add comment
* address nat's comment
* fix linting and checker_test
* update comment
* add comments
* remove "copied from ecclient" comments
* add clarification comments in ec.Repair
* rename pkg/linksharing to linksharing
* rename pkg/httpserver to linksharing/httpserver
* rename pkg/eestream to uplink/eestream
* rename pkg/stream to uplink/stream
* rename pkg/metainfo/kvmetainfo to uplink/metainfo/kvmetainfo
* rename pkg/auth/signing to pkg/signing
* rename pkg/storage to uplink/storage
* rename pkg/accounting to satellite/accounting
* rename pkg/audit to satellite/audit
* rename pkg/certdb to satellite/certdb
* rename pkg/discovery to satellite/discovery
* rename pkg/overlay to satellite/overlay
* rename pkg/datarepair to satellite/repair