The chief segment health models we've come up with are the "immediate
danger" model and the "survivability" model. The former calculates the
chance of losing a segment becoming lost in the next time period (using
the CDF of the binomial distribution to estimate the chance of x nodes
failing in that period), while the latter estimates the number of
iterations for which a segment can be expected to survive (using the
mean of the negative binomial distribution). The immediate danger model
was a promising one for comparing segment health across segments with
different RS parameters, as it is more precisely what we want to
prevent, but it turns out that practically all segments in production
have infinite health, as the chance of losing segments with any
reasonable estimate of node failure rate is smaller than DBL_EPSILON,
the smallest possible difference from 1.0 representable in a float64
(about 1e-16).
Leaving aside the wisdom of worrying about the repair of segments that
have less than a 1e-16 chance of being lost, we want to be extremely
conservative and proactive in our repair efforts, and the health of the
segments we have been repairing thus far also evaluates to infinity
under the immediate danger model. Thus, we find ourselves reaching for
an alternative.
Dr. Ben saves the day: the survivability model is a reasonably close
approximation of the immediate danger model, and even better, it is
far simpler to calculate and yields manageable values for real-world
segments. The downside to it is that it requires as input an estimate
of the total number of active nodes.
This change replaces the segment health calculation to use the
survivability model, and reinstates the call to SegmentHealth() where it
was reverted. It gets estimates for the total number of active nodes by
leveraging the reliability cache.
Change-Id: Ia5d9b9031b9f6cf0fa7b9005a7011609415527dc