storj/go.sum

990 lines
95 KiB
Plaintext
Raw Normal View History

cloud.google.com/go v0.26.0/go.mod h1:aQUYkXzVsufM+DwF1aE+0xfcU+56JwCaLick0ClmMTw=
cloud.google.com/go v0.31.0/go.mod h1:aQUYkXzVsufM+DwF1aE+0xfcU+56JwCaLick0ClmMTw=
cloud.google.com/go v0.34.0/go.mod h1:aQUYkXzVsufM+DwF1aE+0xfcU+56JwCaLick0ClmMTw=
cloud.google.com/go v0.37.0/go.mod h1:TS1dMSSfndXH133OKGwekG838Om/cQT0BUHV3HcBgoo=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
cloud.google.com/go v0.38.0/go.mod h1:990N+gfupTy94rShfmMCWGDn0LpTmnzTp2qbd1dvSRU=
cloud.google.com/go v0.44.1/go.mod h1:iSa0KzasP4Uvy3f1mN/7PiObzGgflwredwwASm/v6AU=
cloud.google.com/go v0.44.2/go.mod h1:60680Gw3Yr4ikxnPRS/oxxkBccT6SA1yMk63TGekxKY=
cloud.google.com/go v0.45.1/go.mod h1:RpBamKRgapWJb87xiFSdk4g1CME7QZg3uwTez+TSTjc=
cloud.google.com/go v0.46.3/go.mod h1:a6bKKbmY7er1mI7TEI4lsAkts/mkhTSZK8w33B4RAg0=
cloud.google.com/go v0.52.0 h1:GGslhk/BU052LPlnI1vpp3fcbUs+hQ3E+Doti/3/vF8=
cloud.google.com/go v0.52.0/go.mod h1:pXajvRH/6o3+F9jDHZWQ5PbGhn+o8w9qiu/CffaVdO4=
cloud.google.com/go/bigquery v1.0.1/go.mod h1:i/xbL2UlR5RvWAURpBYZTtm/cXjCha9lbfbpx4poX+o=
cloud.google.com/go/datastore v1.0.0/go.mod h1:LXYbyblFSglQ5pkeyhO+Qmw7ukd3C+pD7TKLgZqpHYE=
cloud.google.com/go/firestore v1.1.0/go.mod h1:ulACoGHTpvq5r8rxGJ4ddJZBZqakUQqClKRT5SZwBmk=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
cloud.google.com/go/pubsub v1.0.1/go.mod h1:R0Gpsv3s54REJCy4fxDixWD93lHJMoZTyQ2kNxGRt3I=
cloud.google.com/go/storage v1.0.0 h1:VV2nUM3wwLLGh9lSABFgZMjInyUbJeaRSE64WuAIQ+4=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
cloud.google.com/go/storage v1.0.0/go.mod h1:IhtSnM/ZTZV8YYJWCY8RULGVqBDmpoyjwiyrjsg+URw=
dmitri.shuralyov.com/app/changes v0.0.0-20180602232624-0a106ad413e3/go.mod h1:Yl+fi1br7+Rr3LqpNJf1/uxUdtRUV+Tnj0o93V2B9MU=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
dmitri.shuralyov.com/gpu/mtl v0.0.0-20190408044501-666a987793e9/go.mod h1:H6x//7gZCb22OMCxBHrMx7a5I7Hp++hsVxbQ4BYO7hU=
dmitri.shuralyov.com/html/belt v0.0.0-20180602232347-f7d459c86be0/go.mod h1:JLBrvjyP0v+ecvNYvCpyZgu5/xkfAUhi6wJj28eUfSU=
dmitri.shuralyov.com/service/change v0.0.0-20181023043359-a85b471d5412/go.mod h1:a1inKt/atXimZ4Mv927x+r7UpyzRUf4emIoiiSC2TN4=
dmitri.shuralyov.com/state v0.0.0-20180228185332-28bcc343414c/go.mod h1:0PRwlb0D6DFvNNtx+9ybjezNCa8XF0xaYcETyp6rHWU=
git.apache.org/thrift.git v0.0.0-20180902110319-2566ecd5d999/go.mod h1:fPE2ZNJGynbRyZ4dJvy6G277gSllfV2HJqblrnkyeyg=
2018-10-06 18:57:53 +01:00
github.com/BurntSushi/toml v0.3.1 h1:WXkYYl6Yr3qBf1K79EBnL4mak0OimBfB0XUf9Vl28OQ=
github.com/BurntSushi/toml v0.3.1/go.mod h1:xHWCNGjB5oqiDr8zfno3MHue2Ht5sIBksp03qcyfWMU=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/BurntSushi/xgb v0.0.0-20160522181843-27f122750802/go.mod h1:IVnqGOEym/WlBOVXweHU+Q+/VP0lqqI8lqeDx9IjBqo=
github.com/Masterminds/semver/v3 v3.1.1 h1:hLg3sBzpNErnxhQtUy/mmLR2I9foDujNK030IGemrRc=
github.com/Masterminds/semver/v3 v3.1.1/go.mod h1:VPu/7SZ7ePZ3QOrcuXROw5FAcLl4a0cBrbBpGY/8hQs=
github.com/OneOfOne/xxhash v1.2.2/go.mod h1:HSdplMjZKSmBqAxg5vPj2TmRDmfkzw+cTzAElWljhcU=
github.com/VividCortex/ewma v1.2.0 h1:f58SaIzcDXrSy3kWaHNvuJgJ3Nmz59Zji6XoJR/q1ow=
github.com/VividCortex/ewma v1.2.0/go.mod h1:nz4BbCtbLyFDeC9SUHbtcT5644juEuWfUAUnGx7j5l4=
github.com/acarl005/stripansi v0.0.0-20180116102854-5a71ef0e047d h1:licZJFw2RwpHMqeKTCYkitsPqHNxTmd4SNR5r94FGM8=
github.com/acarl005/stripansi v0.0.0-20180116102854-5a71ef0e047d/go.mod h1:asat636LX7Bqt5lYEZ27JNDcqxfjdBQuJ/MM4CN/Lzo=
github.com/ajg/form v1.5.1 h1:t9c7v8JUKu/XxOGBU0yjNpaMloxGEJhUkqFRq0ibGeU=
github.com/ajg/form v1.5.1/go.mod h1:uL1WgH+h2mgNtvBq0339dVnzXdBETtL2LeUXaIv25UY=
github.com/alecthomas/template v0.0.0-20160405071501-a0175ee3bccc/go.mod h1:LOuyumcjzFXgccqObfd/Ljyb9UuFJ6TxHnclSeseNhc=
github.com/alecthomas/units v0.0.0-20151022065526-2efee857e7cf/go.mod h1:ybxpYRFXyAe+OPACYpWeL0wqObRcbAqCMya13uyzqw0=
github.com/alessio/shellescape v1.2.2 h1:8LnL+ncxhWT2TR00dfJRT25JWWrhkMZXneHVWnetDZg=
github.com/alessio/shellescape v1.2.2/go.mod h1:PZAiSCk0LJaZkiCSkPv8qIobYglO3FPpyFjDCtHLS30=
github.com/alicebob/gopher-json v0.0.0-20200520072559-a9ecdc9d1d3a h1:HbKu58rmZpUGpz5+4FfNmIU+FmZg2P3Xaj2v2bfNWmk=
github.com/alicebob/gopher-json v0.0.0-20200520072559-a9ecdc9d1d3a/go.mod h1:SGnFV6hVsYE877CKEZ6tDNTjaSXYUk6QqoIK6PrAtcc=
github.com/alicebob/miniredis/v2 v2.13.3 h1:kohgdtN58KW/r9ZDVmMJE3MrfbumwsDQStd0LPAGmmw=
github.com/alicebob/miniredis/v2 v2.13.3/go.mod h1:uS970Sw5Gs9/iK3yBg0l9Uj9s25wXxSpQUE9EaJ/Blg=
github.com/andybalholm/brotli v1.0.0 h1:7UCwP93aiSfvWpapti8g88vVVGp2qqtGyePsSuDafo4=
github.com/andybalholm/brotli v1.0.0/go.mod h1:loMXtMfwqflxFJPmdbJO0a3KNoPuLBgiu3qAvBg8x/Y=
github.com/anmitsu/go-shlex v0.0.0-20161002113705-648efa622239/go.mod h1:2FmKhYUyUczH0OGQWaF5ceTx0UBShxjsH6f8oGKYe2c=
github.com/apache/thrift v0.12.0 h1:pODnxUFNcjP9UTLZGTdeh+j16A8lJbRvD3rOtrk/7bs=
github.com/apache/thrift v0.12.0/go.mod h1:cp2SuWMxlEZw2r+iP2GNCdIi4C1qmUzdZFSVb+bacwQ=
github.com/armon/circbuf v0.0.0-20150827004946-bbbad097214e/go.mod h1:3U/XgcO3hCbHZ8TKRvWD2dDTCfh9M9ya+I9JpbB7O8o=
github.com/armon/go-metrics v0.0.0-20180917152333-f0300d1749da/go.mod h1:Q73ZrmVTwzkszR9V5SSuryQ31EELlFMUz1kKyl939pY=
github.com/armon/go-radix v0.0.0-20180808171621-7fddfc383310/go.mod h1:ufUuZ+zHj4x4TnLV4JWEpy2hxWSpsRywHrMgIH9cCH8=
2018-10-06 18:57:53 +01:00
github.com/beorn7/perks v0.0.0-20180321164747-3a771d992973/go.mod h1:Dwedo/Wpr24TaqPxmxbtue+5NUziq4I4S80YR8gNf3Q=
github.com/beorn7/perks v1.0.0/go.mod h1:KWe93zE9D1o94FZ5RNwFwVgaQK1VOXiVxmqh+CedLV8=
github.com/bgentry/speakeasy v0.1.0/go.mod h1:+zsyZBPWlz7T6j88CTgSN5bM796AkVf0kBD4zp0CCIs=
github.com/bketelsen/crypt v0.0.3-0.20200106085610-5cbc8cc4026c/go.mod h1:MKsuJmJgSg28kpZDP6UIiPt0e0Oz0kqKNGyRaWEPv84=
2019-09-20 15:22:40 +01:00
github.com/blang/semver v3.5.1+incompatible h1:cQNTCjp13qL8KC3Nbxr/y2Bqb63oX6wdnnjpJbkM4JQ=
github.com/blang/semver v3.5.1+incompatible/go.mod h1:kRBLl5iJ+tD4TcOOxsy/0fnwebNt5EWlYSAyrTnjyyk=
github.com/bmizerany/assert v0.0.0-20160611221934-b7ed37b82869 h1:DDGfHa7BWjL4YnC6+E63dPcxHo2sUxDIu8g3QgEJdRY=
github.com/bmizerany/assert v0.0.0-20160611221934-b7ed37b82869/go.mod h1:Ekp36dRnpXw/yCqJaO+ZrUyxD+3VXMFFr56k5XYrpB4=
github.com/bmkessler/fastdiv v0.0.0-20190227075523-41d5178f2044 h1:8Rz0TcIbkvU+x53bDQgezQ3tbjrQSpZRr6h9JnR9lZU=
github.com/bmkessler/fastdiv v0.0.0-20190227075523-41d5178f2044/go.mod h1:OI0uaNyGvxANSxteY6/mFRZs9EcQGqK30Bd1wqQj9zQ=
github.com/boombuler/barcode v1.0.1-0.20190219062509-6c824513bacc h1:biVzkmvwrH8WK8raXaxBx6fRVTlJILwEwQGL1I/ByEI=
github.com/boombuler/barcode v1.0.1-0.20190219062509-6c824513bacc/go.mod h1:paBWMcWSl3LHKBqUq+rly7CNSldXjb2rDl3JlRe0mD8=
github.com/bradfitz/go-smtpd v0.0.0-20170404230938-deb6d6237625/go.mod h1:HYsPBTaaSFSlLx/70C2HPIMNZpVV8+vt/A+FMnYP11g=
github.com/bsm/ginkgo/v2 v2.7.0 h1:ItPMPH90RbmZJt5GtkcNvIRuGEdwlBItdNVoyzaNQao=
github.com/bsm/gomega v1.26.0 h1:LhQm+AFcgV2M0WyKroMASzAzCAJVpAxQXv4SaI9a69Y=
github.com/buger/jsonparser v0.0.0-20181115193947-bf1c66bbce23/go.mod h1:bbYlZJ7hK1yFx9hf58LP0zeX7UjIGs20ufpu3evjr+s=
github.com/calebcase/tmpfile v1.0.3 h1:BZrOWZ79gJqQ3XbAQlihYZf/YCV0H4KPIdM5K5oMpJo=
github.com/calebcase/tmpfile v1.0.3/go.mod h1:UAUc01aHeC+pudPagY/lWvt2qS9ZO5Zzof6/tIUzqeI=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/census-instrumentation/opencensus-proto v0.2.1/go.mod h1:f6KPmirojxKA12rnyqOA5BBL4O983OfeGPqjHWSTneU=
github.com/cespare/xxhash v1.1.0/go.mod h1:XrSqR1VqqWfGrhpAt58auRo0WTKS1nRRg3ghfAqPWnc=
github.com/cespare/xxhash/v2 v2.2.0 h1:DC2CZ1Ep5Y4k3ZQ899DldepgrayRUGE6BBZ/cd9Cj44=
github.com/cespare/xxhash/v2 v2.2.0/go.mod h1:VGX0DQ3Q6kWi7AoAeZDth3/j3BFtOZR5XLFGgcrjCOs=
github.com/cheekybits/genny v1.0.0/go.mod h1:+tQajlRqAUrPI7DOSpB0XAqZYtQakVtB7wXkRAgjxjQ=
github.com/chzyer/logex v1.1.10/go.mod h1:+Ywpsq7O8HXn0nuIou7OrIPyXbp3wmkHB+jjWRnGsAI=
github.com/chzyer/readline v0.0.0-20180603132655-2972be24d48e/go.mod h1:nSuG5e5PlCu98SY8svDHJxuZscDgtXS6KTTbou5AhLI=
github.com/chzyer/test v0.0.0-20180213035817-a1ea475d72b1/go.mod h1:Q3SI9o4m/ZMnBNeIyt5eFwwo7qiLfzFZmjNmxjkiQlU=
github.com/client9/misspell v0.3.4/go.mod h1:qj6jICC3Q7zFZvVWo7KLAzC3yx5G7kyvSDkc90ppPyw=
2018-10-06 18:57:53 +01:00
github.com/cloudfoundry/gosigar v1.1.0 h1:V/dVCzhKOdIU3WRB5inQU20s4yIgL9Dxx/Mhi0SF8eM=
github.com/cloudfoundry/gosigar v1.1.0/go.mod h1:3qLfc2GlfmwOx2+ZDaRGH3Y9fwQ0sQeaAleo2GV5pH0=
github.com/cockroachdb/apd v1.1.0 h1:3LFP3629v+1aKXU5Q37mxmRxX/pIu1nijXydLShEq5I=
github.com/cockroachdb/apd v1.1.0/go.mod h1:8Sl8LxpKi29FqWXR16WEFZRNSz3SoPzUzeMeY4+DwBQ=
github.com/coreos/bbolt v1.3.2/go.mod h1:iRUV2dpdMOn7Bo10OQBFzIJO9kkE559Wcmn+qkEiiKk=
github.com/coreos/etcd v3.3.13+incompatible/go.mod h1:uF7uidLiAD3TWHmW31ZFd/JWoc32PjwdhPthX9715RE=
github.com/coreos/go-semver v0.3.0/go.mod h1:nnelYz7RCh+5ahJtPPxZlU+153eP4D4r3EedlOD2RNk=
github.com/coreos/go-systemd v0.0.0-20181012123002-c6f51f82210d/go.mod h1:F5haX7vjVVG0kc13fIWeqUViNPyEJxv/OmvnBo0Yme4=
github.com/coreos/go-systemd v0.0.0-20190321100706-95778dfbb74e/go.mod h1:F5haX7vjVVG0kc13fIWeqUViNPyEJxv/OmvnBo0Yme4=
github.com/coreos/go-systemd v0.0.0-20190719114852-fd7a80b32e1f/go.mod h1:F5haX7vjVVG0kc13fIWeqUViNPyEJxv/OmvnBo0Yme4=
github.com/coreos/pkg v0.0.0-20180928190104-399ea9e2e55f/go.mod h1:E3G3o1h8I7cfcXa63jLwjI0eiQQMgzzUDFVpN/nH/eA=
github.com/cpuguy83/go-md2man/v2 v2.0.0/go.mod h1:maD7wRr/U5Z6m/iR4s+kqSMx2CaBsrgA7czyZG/E6dU=
github.com/creack/pty v1.1.7/go.mod h1:lj5s0c3V2DBrqTV7llrYr5NG6My20zk30Fl46Y7DoTY=
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
2018-10-06 18:57:53 +01:00
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/dgrijalva/jwt-go v3.2.0+incompatible/go.mod h1:E3ru+11k8xSBh+hMPgOLZmtrrCbhqsmaPHjLKYnJCaQ=
github.com/dgryski/go-rendezvous v0.0.0-20200823014737-9f7001d12a5f h1:lO4WD4F/rVNCu3HqELle0jiPLLBs70cWOduZpkS1E78=
github.com/dgryski/go-rendezvous v0.0.0-20200823014737-9f7001d12a5f/go.mod h1:cuUVRXasLTGF7a8hSLbxyZXjz+1KgoB3wDUb6vlszIc=
github.com/dgryski/go-sip13 v0.0.0-20181026042036-e10d5fee7954/go.mod h1:vAd38F8PWV+bWy6jNmig1y/TA+kYO4g3RSRF0IAv0no=
github.com/dsnet/try v0.0.3 h1:ptR59SsrcFUYbT/FhAbKTV6iLkeD6O18qfIWRml2fqI=
github.com/dustin/go-humanize v1.0.0/go.mod h1:HtrtbFcZ19U5GC7JDqmcUSB87Iq5E25KnS6fMYU6eOk=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/envoyproxy/go-control-plane v0.9.1-0.20191026205805-5f8ba28d4473/go.mod h1:YTl/9mNaCwkRvm6d1a2C3ymFceY/DCBVvsKhRF0iEA4=
github.com/envoyproxy/protoc-gen-validate v0.1.0/go.mod h1:iSmxcyjqTsJpI2R4NaDN7+kN2VEUnK/pcBlmesArF7c=
github.com/fasthttp-contrib/websocket v0.0.0-20160511215533-1f3b11f56072/go.mod h1:duJ4Jxv5lDcvg4QuQr0oowTf7dz4/CR8NtyCooz9HL8=
2018-10-06 18:57:53 +01:00
github.com/fatih/color v1.7.0/go.mod h1:Zm6kSWBoL9eyXnKyktHP6abPY2pDugNf5KwzbycvMj4=
github.com/fatih/color v1.9.0 h1:8xPHl4/q1VyqGIPif1F+1V3Y3lSmrq01EabUW3CoW5s=
github.com/fatih/color v1.9.0/go.mod h1:eQcE1qtQxscV5RaZvpXrrb8Drkc3/DdQ+uUYCNjL+zU=
github.com/fatih/structs v1.1.0 h1:Q7juDM0QtcnhCpeyLGQKyg4TOIghuNXrkL32pHAUMxo=
github.com/fatih/structs v1.1.0/go.mod h1:9NiDSp5zOcgEDl+j00MP/WkGVPOlPRLejGD8Ga6PJ7M=
github.com/flynn/go-shlex v0.0.0-20150515145356-3f9db97f8568/go.mod h1:xEzjJPgXI435gkrCt3MPfRiAkVrwSbHsst4LCFVfpJc=
github.com/flynn/noise v1.0.0 h1:DlTHqmzmvcEiKj+4RYo/imoswx/4r6iBlCMfVtrMXpQ=
github.com/flynn/noise v1.0.0/go.mod h1:xbMo+0i6+IGbYdJhF31t2eR1BIU0CYc12+BNAKwUTag=
github.com/francoispqt/gojay v1.2.13/go.mod h1:ehT5mTG4ua4581f1++1WLG0vPdaA9HaiDsoyrBGkyDY=
2018-10-06 18:57:53 +01:00
github.com/fsnotify/fsnotify v1.4.7/go.mod h1:jwhsz4b93w/PPRr/qN1Yymfu8t87LnFCMoQvtojpjFo=
github.com/fsnotify/fsnotify v1.4.9/go.mod h1:znqG4EE+3YCdAaPaxE2ZRY/06pZUdp0tY4IgpuI1SZQ=
github.com/fsnotify/fsnotify v1.5.4 h1:jRbGcIw6P2Meqdwuo0H1p6JVLbL5DHKAKlYndzMwVZI=
github.com/fsnotify/fsnotify v1.5.4/go.mod h1:OVB6XrOHzAwXMpEM7uPOzcehqUV2UqJxmVXmkdnm1bU=
github.com/gavv/httpexpect v2.0.0+incompatible h1:1X9kcRshkSKEjNJJxX9Y9mQ5BRfbxU5kORdjhlA1yX8=
github.com/gavv/httpexpect v2.0.0+incompatible/go.mod h1:x+9tiU1YnrOvnB725RkpoLv1M62hOWzwo5OXotisrKc=
github.com/ghodss/yaml v1.0.0/go.mod h1:4dBDuWmgqj2HViK6kFavaiC9ZROes6MMH2rRYeMEF04=
github.com/gliderlabs/ssh v0.1.1/go.mod h1:U7qILu1NlMHj9FlMhZLlkCdDnU1DBEAqr0aevW3Awn0=
github.com/go-errors/errors v1.0.1/go.mod h1:f4zRHt4oKfwPJE5k8C9vpYG+aDHdBFUsgrm6/TyX73Q=
github.com/go-gl/glfw v0.0.0-20190409004039-e6da0acd62b1/go.mod h1:vR7hzQXu2zJy9AVAgeJqvqgH9Q5CA+iKCZ2gyEVpxRU=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/go-gl/glfw/v3.3/glfw v0.0.0-20191125211704-12ad95a8df72/go.mod h1:tQ2UAYgL5IevRw8kRxooKSPJfGvJ9fJQFa0TUsXzTg8=
github.com/go-kit/kit v0.8.0/go.mod h1:xBxKIO96dXMWWy0MnWVtmwkA9/13aqxPnvrjFYMA2as=
github.com/go-kit/log v0.1.0/go.mod h1:zbhenjAZHb184qTLMA9ZjW7ThYL0H2mk7Q6pNt4vbaY=
github.com/go-logfmt/logfmt v0.3.0/go.mod h1:Qt1PoO58o5twSAckw1HlFXLmHsOX5/0LbT9GBnD5lWE=
github.com/go-logfmt/logfmt v0.4.0/go.mod h1:3RMwSq7FuexP4Kalkev3ejPJsZTpXXBr9+V4qmtdjCk=
github.com/go-logfmt/logfmt v0.5.0/go.mod h1:wCYkCAKZfumFQihp8CzCvQ3paCTfi41vtzG1KdI/P7A=
github.com/go-oauth2/oauth2/v4 v4.4.2 h1:tWQlR5I4/qhWiyOME67BAFmo622yi+2mm7DMm8DpMdg=
github.com/go-oauth2/oauth2/v4 v4.4.2/go.mod h1:K4DemYzNwwYnIDOPdHtX/7SlO0AHdtlphsTgE7lA3PA=
github.com/go-session/session v3.1.2+incompatible/go.mod h1:8B3iivBQjrz/JtC68Np2T1yBBLxTan3mn/3OM0CyRt0=
github.com/go-stack/stack v1.8.0/go.mod h1:v0f6uXyyMGvRgIKkXu+yp6POWl0qKG85gN/melR3HDY=
github.com/go-task/slim-sprig v0.0.0-20210107165309-348f09dbbbc0 h1:p104kn46Q8WdvHunIJ9dAyjPVtrBPhSr3KT2yUst43I=
github.com/go-task/slim-sprig v0.0.0-20210107165309-348f09dbbbc0/go.mod h1:fyg7847qk6SyHyPtNmDHnmrv/HOrqktSC+C9fM+CJOE=
github.com/gofrs/uuid v4.0.0+incompatible h1:1SD/1F5pU8p29ybwgQSwpQk+mwdRrXCYuPhW6m+TnJw=
github.com/gofrs/uuid v4.0.0+incompatible/go.mod h1:b2aQJv3Z4Fp6yNu3cdSllBxTCLRxnplIgP/c0N/04lM=
github.com/gogo/protobuf v1.1.1/go.mod h1:r8qH/GZQm5c6nD/R0oafs1akxWv10x8SbQlK7atdtwQ=
github.com/gogo/protobuf v1.2.1/go.mod h1:hp+jE20tsWTFYpLwKvXlhS1hjn+gTNwPg2I6zVXpSg4=
github.com/gogo/protobuf v1.3.2 h1:Ov1cvc58UF3b5XjBnZv7+opcTcQFZebYjWzi34vdm4Q=
github.com/gogo/protobuf v1.3.2/go.mod h1:P1XiOD3dCwIKUDQYPy72D8LYyHL2YPYrpS2s69NZV8Q=
github.com/golang-jwt/jwt v3.2.1+incompatible h1:73Z+4BJcrTC+KczS6WvTPvRGOp1WmfEP4Q1lOd9Z/+c=
github.com/golang-jwt/jwt v3.2.1+incompatible/go.mod h1:8pz2t5EyA70fFQQSrl6XZXzqecmYZeUEB8OUGHkxJ+I=
github.com/golang/glog v0.0.0-20160126235308-23def4e6c14b h1:VKtxabqXZkF25pY9ekfRL6a582T4P37/31XEstQ5p58=
2018-10-06 18:57:53 +01:00
github.com/golang/glog v0.0.0-20160126235308-23def4e6c14b/go.mod h1:SBH7ygxi8pfUlaOkMMuAQtPIUF8ecWP5IEl/CR7VP2Q=
github.com/golang/groupcache v0.0.0-20190129154638-5b532d6fd5ef/go.mod h1:cIg4eruTrX1D+g88fzRXU5OdNfaM+9IcxsU14FzY7Hc=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/golang/groupcache v0.0.0-20190702054246-869f871628b6/go.mod h1:cIg4eruTrX1D+g88fzRXU5OdNfaM+9IcxsU14FzY7Hc=
github.com/golang/groupcache v0.0.0-20191227052852-215e87163ea7 h1:5ZkaAPbicIKTF2I64qf5Fh8Aa83Q/dnOafMYV0OMwjA=
github.com/golang/groupcache v0.0.0-20191227052852-215e87163ea7/go.mod h1:cIg4eruTrX1D+g88fzRXU5OdNfaM+9IcxsU14FzY7Hc=
github.com/golang/lint v0.0.0-20180702182130-06c8688daad7/go.mod h1:tluoj9z5200jBnyusfRPU2LqT6J+DAorxEvtC7LHB+E=
2018-10-06 18:57:53 +01:00
github.com/golang/mock v1.1.1/go.mod h1:oTYuIxOrZwtPieC+H1uAHpcLFnEyAGVDL/k47Jfbm0A=
github.com/golang/mock v1.2.0/go.mod h1:oTYuIxOrZwtPieC+H1uAHpcLFnEyAGVDL/k47Jfbm0A=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/golang/mock v1.3.1/go.mod h1:sBzyDLLjw3U8JLTeZvSv8jJB+tU5PVekmnlKIyFUx0Y=
github.com/golang/mock v1.4.4/go.mod h1:l3mdAwkq5BuhzHwde/uurv3sEJeZMXNpwsxVWU71h+4=
github.com/golang/mock v1.6.0 h1:ErTB+efbowRARo13NNdxyJji2egdxLGQhRaY+DUumQc=
github.com/golang/mock v1.6.0/go.mod h1:p6yTPP+5HYm5mzsMV8JkE6ZKdX+/wYM6Hr+LicevLPs=
2018-10-06 18:57:53 +01:00
github.com/golang/protobuf v1.2.0/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
github.com/golang/protobuf v1.3.1/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
github.com/golang/protobuf v1.3.2/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
github.com/golang/protobuf v1.4.0-rc.1/go.mod h1:ceaxUfeHdC40wWswd/P6IGgMaK3YpKi5j83Wpe3EHw8=
github.com/golang/protobuf v1.4.0-rc.1.0.20200221234624-67d41d38c208/go.mod h1:xKAWHe0F5eneWXFV3EuXVDTCmh+JuBKY0li0aMyXATA=
github.com/golang/protobuf v1.4.0-rc.2/go.mod h1:LlEzMj4AhA7rCAGe4KMBDvJI+AwstrUpVNzEA03Pprs=
github.com/golang/protobuf v1.4.0-rc.4.0.20200313231945-b860323f09d0/go.mod h1:WU3c8KckQ9AFe+yFwt9sWVRKCVIyN9cPHBJSNnbL67w=
github.com/golang/protobuf v1.4.0/go.mod h1:jodUvKwWbYaEsadDk5Fwe5c77LiNKVO9IDvqG2KuDX0=
github.com/golang/protobuf v1.4.1/go.mod h1:U8fpvMrcmy5pZrNK1lt4xCsGvpyWQ/VVv6QDs8UjoX8=
github.com/golang/protobuf v1.4.2/go.mod h1:oDoupMAO8OvCJWAcko0GGGIgR6R6ocIYbsSw735rRwI=
github.com/golang/protobuf v1.5.0/go.mod h1:FsONVRAS9T7sI+LIUmWTfcYkHO4aIWwzhcaSAoJOfIk=
github.com/golang/protobuf v1.5.2 h1:ROPKBNFfQgOUMifHyP+KYbvpjbdoFNs+aK7DXlji0Tw=
github.com/golang/protobuf v1.5.2/go.mod h1:XVQd3VNwM+JqD3oG2Ue2ip4fOMUkwXdXDdiuN0vRsmY=
github.com/google/btree v0.0.0-20180813153112-4030bb1f1f0c/go.mod h1:lNA+9X1NB3Zf8V7Ke586lFgjr2dZNuvo3lPJSGZ5JPQ=
github.com/google/btree v1.0.0/go.mod h1:lNA+9X1NB3Zf8V7Ke586lFgjr2dZNuvo3lPJSGZ5JPQ=
2018-10-06 18:57:53 +01:00
github.com/google/go-cmp v0.2.0/go.mod h1:oXzfMopK8JAjlY9xF4vHSVASa0yLyX7SntLO5aqRK0M=
github.com/google/go-cmp v0.3.0/go.mod h1:8QqcDgzrUqlUb/G2PQTWiueGozuR1884gddMywk6iLU=
github.com/google/go-cmp v0.3.1/go.mod h1:8QqcDgzrUqlUb/G2PQTWiueGozuR1884gddMywk6iLU=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/google/go-cmp v0.4.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.5/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.8 h1:e6P7q2lk1O+qJJb4BtCQXlK8vWEO8V1ZeuEdJNOqZyg=
github.com/google/go-cmp v0.5.8/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
github.com/google/go-github v17.0.0+incompatible/go.mod h1:zLgOLi98H3fifZn+44m+umXrS52loVEgC2AApnigrVQ=
github.com/google/go-querystring v1.0.0 h1:Xkwi/a1rcvNg1PPYe5vI8GbeBY/jrVuDX5ASuANWTrk=
github.com/google/go-querystring v1.0.0/go.mod h1:odCYkC5MyYFN7vkCjXpyrEuKhc/BUO6wN/zVPAxq5ck=
github.com/google/martian v2.1.0+incompatible/go.mod h1:9I4somxYTbIHy5NJKHRl3wXiIaQGbYVAs8BPL6v8lEs=
github.com/google/pprof v0.0.0-20181206194817-3ea8567a2e57/go.mod h1:zfwlbNMJ+OItoe0UupaVj+oy1omPYYDuagoSzA8v9mc=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/google/pprof v0.0.0-20190515194954-54271f7e092f/go.mod h1:zfwlbNMJ+OItoe0UupaVj+oy1omPYYDuagoSzA8v9mc=
github.com/google/pprof v0.0.0-20191218002539-d4f498aebedc/go.mod h1:ZgVRPoUq/hfqzAqh7sHMqb3I9Rq5C59dIz2SbBwJ4eM=
github.com/google/pprof v0.0.0-20211108044417-e9b028704de0 h1:rsq1yB2xiFLDYYaYdlGBsSkwVzsCo500wMhxvW5A/bk=
github.com/google/pprof v0.0.0-20211108044417-e9b028704de0/go.mod h1:KgnwoLYCZ8IQu3XUZ8Nc/bM9CCZFOyjUNOSygVozoDg=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/google/renameio v0.1.0/go.mod h1:KWCgfxg9yswjAJkECMjeO8J8rahYeXnNhOm40UhjYkI=
github.com/google/uuid v1.1.1 h1:Gkbcsh/GbpXz7lPftLA3P6TYMwjCLYm83jiFQZF/3gY=
github.com/google/uuid v1.1.1/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/googleapis/gax-go v2.0.0+incompatible/go.mod h1:SFVmujtThgffbyetf+mdk2eWhX2bMyUtNHzFKcPA9HY=
github.com/googleapis/gax-go/v2 v2.0.3/go.mod h1:LLvjysVCY1JZeum8Z6l8qUty8fiNwE08qbEPm1M08qg=
github.com/googleapis/gax-go/v2 v2.0.4/go.mod h1:0Wqv26UfaUD9n4G6kQubkQ+KchISgw+vpHVxEJEs9eg=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/googleapis/gax-go/v2 v2.0.5 h1:sjZBwGj9Jlw33ImPtvFviGYvseOtDM7hkSKB7+Tv3SM=
github.com/googleapis/gax-go/v2 v2.0.5/go.mod h1:DWXyrwAJ9X0FpwwEdw+IPEYBICEFu5mhpdKc/us6bOk=
github.com/gopherjs/gopherjs v0.0.0-20181017120253-0766667cb4d1 h1:EGx4pi6eqNxGaHF6qqu48+N2wcFQ5qg5FXgOdqsJ5d8=
github.com/gopherjs/gopherjs v0.0.0-20181017120253-0766667cb4d1/go.mod h1:wJfORRmW1u3UXTncJ5qlYoELFm8eSnnEO6hX4iZ3EWY=
github.com/gorilla/mux v1.8.0 h1:i40aqfkR1h2SlN9hojwV5ZA91wcXFOvkdNIeFDP5koI=
github.com/gorilla/mux v1.8.0/go.mod h1:DVbg23sWSpFRCP0SfiEN6jmj59UnW/n46BH5rLB71So=
github.com/gorilla/schema v1.2.0 h1:YufUaxZYCKGFuAq3c96BOhjgd5nmXiOY9NGzF247Tsc=
github.com/gorilla/schema v1.2.0/go.mod h1:kgLaKoK1FELgZqMAVxx/5cbj0kT+57qxUrAlIO2eleU=
github.com/gorilla/websocket v1.4.2 h1:+/TMaTYc4QFitKJxsQ7Yye35DkWvkdLcvGKqM+x0Ufc=
github.com/gorilla/websocket v1.4.2/go.mod h1:YR8l580nyteQvAITg2hZ9XVh4b55+EU/adAjf1fMHhE=
github.com/graphql-go/graphql v0.7.9 h1:5Va/Rt4l5g3YjwDnid3vFfn43faaQBq7rMcIZ0VnV34=
github.com/graphql-go/graphql v0.7.9/go.mod h1:k6yrAYQaSP59DC5UVxbgxESlmVyojThKdORUqGDGmrI=
github.com/gregjones/httpcache v0.0.0-20180305231024-9cad4c3443a7/go.mod h1:FecbI9+v66THATjSRHfNgh1IVFe/9kFxbXtjV0ctIMA=
github.com/grpc-ecosystem/go-grpc-middleware v1.0.0/go.mod h1:FiyG127CGDf3tlThmgyCl78X/SZQqEOJBCDaAfeWzPs=
github.com/grpc-ecosystem/go-grpc-prometheus v1.2.0/go.mod h1:8NvIoxWQoOIhqOTXgfV/d3M/q6VIi02HzZEHgUlZvzk=
github.com/grpc-ecosystem/grpc-gateway v1.5.0/go.mod h1:RSKVYQBd5MCa4OVpNdGskqpgL2+G+NZTnrVHpWWfpdw=
github.com/grpc-ecosystem/grpc-gateway v1.9.0/go.mod h1:vNeuVxBJEsws4ogUvrchl83t/GYV9WGTSLVdBhOQFDY=
github.com/hashicorp/consul/api v1.1.0/go.mod h1:VmuI/Lkw1nC05EYQWNKwWGbkg+FbDBtguAZLlVdkD9Q=
github.com/hashicorp/consul/sdk v0.1.1/go.mod h1:VKf9jXwCTEY1QZP2MOLRhb5i/I/ssyNV1vwHyQBF0x8=
github.com/hashicorp/errwrap v1.0.0/go.mod h1:YH+1FKiLXxHSkmPseP+kNlulaMuP3n2brvKWEqk/Jc4=
github.com/hashicorp/go-cleanhttp v0.5.1/go.mod h1:JpRdi6/HCYpAwUzNwuwqhbovhLtngrth3wmdIIUrZ80=
github.com/hashicorp/go-immutable-radix v1.0.0/go.mod h1:0y9vanUI8NX6FsYoO3zeMjhV/C5i9g4Q3DwcSNZ4P60=
github.com/hashicorp/go-msgpack v0.5.3/go.mod h1:ahLV/dePpqEmjfWmKiqvPkv/twdG7iPBM1vqhUKIvfM=
github.com/hashicorp/go-multierror v1.0.0/go.mod h1:dHtQlpGsu+cZNNAkkCN/P3hoUDHhCYQXV3UM06sGGrk=
github.com/hashicorp/go-rootcerts v1.0.0/go.mod h1:K6zTfqpRlCUIjkwsN4Z+hiSfzSTQa6eBIzfwKfwNnHU=
github.com/hashicorp/go-sockaddr v1.0.0/go.mod h1:7Xibr9yA9JjQq1JpNB2Vw7kxv8xerXegt+ozgdvDeDU=
github.com/hashicorp/go-syslog v1.0.0/go.mod h1:qPfqrKkXGihmCqbJM2mZgkZGvKG1dFdvsLplgctolz4=
github.com/hashicorp/go-uuid v1.0.0/go.mod h1:6SBZvOh/SIDV7/2o3Jml5SYk/TvGqwFJ/bN7x4byOro=
github.com/hashicorp/go-uuid v1.0.1/go.mod h1:6SBZvOh/SIDV7/2o3Jml5SYk/TvGqwFJ/bN7x4byOro=
github.com/hashicorp/go.net v0.0.1/go.mod h1:hjKkEWcCURg++eb33jQU7oqQcI9XDCnUzHA0oac0k90=
2018-10-06 18:57:53 +01:00
github.com/hashicorp/golang-lru v0.5.0/go.mod h1:/m3WP610KZHVQ1SGc6re/UDhFvYD7pJ4Ao+sR/qLZy8=
github.com/hashicorp/golang-lru v0.5.1/go.mod h1:/m3WP610KZHVQ1SGc6re/UDhFvYD7pJ4Ao+sR/qLZy8=
2018-10-06 18:57:53 +01:00
github.com/hashicorp/hcl v1.0.0 h1:0Anlzjpi4vEasTeNFn2mLJgTSwt0+6sfsiTG8qcWGx4=
github.com/hashicorp/hcl v1.0.0/go.mod h1:E5yfLk+7swimpb2L/Alb/PJmXilQ/rhwaUYs4T20WEQ=
github.com/hashicorp/logutils v1.0.0/go.mod h1:QIAnNjmIWmVIIkWDTG1z5v++HQmx9WQRO+LraFDTW64=
github.com/hashicorp/mdns v1.0.0/go.mod h1:tL+uN++7HEJ6SQLQ2/p+z2pH24WQKWjBPkE0mNTz8vQ=
github.com/hashicorp/memberlist v0.1.3/go.mod h1:ajVTdAv/9Im8oMAAj5G31PhhMCZJV2pPBoIllUwCN7I=
github.com/hashicorp/serf v0.8.2/go.mod h1:6hOLApaqBFA1NXqRQAsxw9QxuDEvNxSQRwA/JwenrHc=
2018-10-06 18:57:53 +01:00
github.com/hpcloud/tail v1.0.0/go.mod h1:ab1qPbhIpdTxEkNHXyeSf5vhxWSCs/tWer42PpOxQnU=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/ianlancetaylor/demangle v0.0.0-20181102032728-5e5cf60278f6/go.mod h1:aSSvb/t6k1mPoxDqO4vJh6VOCGPwU4O0C2/Eqndh1Sc=
github.com/ianlancetaylor/demangle v0.0.0-20210905161508-09a460cdf81d/go.mod h1:aYm2/VgdVmcIU8iMfdMvDMsRAQjcfZSKFby6HOFvi/w=
github.com/imkira/go-interpol v1.1.0 h1:KIiKr0VSG2CUW1hl1jpiyuzuJeKUUpC8iM1AIE7N1Vk=
github.com/imkira/go-interpol v1.1.0/go.mod h1:z0h2/2T3XF8kyEPpRgJ3kmNv+C43p+I/CoI+jC3w2iA=
github.com/inconshreveable/mousetrap v1.0.0 h1:Z8tu5sraLXCXIcARxBp/8cbvlwVa7Z1NHg9XEKhtSvM=
2018-10-06 18:57:53 +01:00
github.com/inconshreveable/mousetrap v1.0.0/go.mod h1:PxqpIevigyE2G7u3NXJIT2ANytuPF1OarO4DADm73n8=
github.com/jackc/chunkreader v1.0.0/go.mod h1:RT6O25fNZIuasFJRyZ4R/Y2BbhasbmZXF9QQ7T3kePo=
github.com/jackc/chunkreader/v2 v2.0.0/go.mod h1:odVSm741yZoC3dpHEUXIqA9tQRhFrgOHwnPIn9lDKlk=
github.com/jackc/chunkreader/v2 v2.0.1 h1:i+RDz65UE+mmpjTfyz0MoVTnzeYxroil2G82ki7MGG8=
github.com/jackc/chunkreader/v2 v2.0.1/go.mod h1:odVSm741yZoC3dpHEUXIqA9tQRhFrgOHwnPIn9lDKlk=
github.com/jackc/pgconn v0.0.0-20190420214824-7e0022ef6ba3/go.mod h1:jkELnwuX+w9qN5YIfX0fl88Ehu4XC3keFuOJJk9pcnA=
github.com/jackc/pgconn v0.0.0-20190824142844-760dd75542eb/go.mod h1:lLjNuW/+OfW9/pnVKPazfWOgNfH2aPem8YQ7ilXGvJE=
github.com/jackc/pgconn v0.0.0-20190831204454-2fabfa3c18b7/go.mod h1:ZJKsE/KZfsUgOEh9hBm+xYTstcNHg7UPMVJqRfQxq4s=
github.com/jackc/pgconn v1.8.0/go.mod h1:1C2Pb36bGIP9QHGBYCjnyhqu7Rv3sGshaQUvmfGIB/o=
github.com/jackc/pgconn v1.9.0/go.mod h1:YctiPyvzfU11JFxoXokUOOKQXQmDMoJL9vJzHH8/2JY=
github.com/jackc/pgconn v1.9.1-0.20210724152538-d89c8390a530/go.mod h1:4z2w8XhRbP1hYxkpTuBjTS3ne3J48K83+u0zoyvg2pI=
github.com/jackc/pgconn v1.11.0 h1:HiHArx4yFbwl91X3qqIHtUFoiIfLNJXCQRsnzkiwwaQ=
github.com/jackc/pgconn v1.11.0/go.mod h1:4z2w8XhRbP1hYxkpTuBjTS3ne3J48K83+u0zoyvg2pI=
github.com/jackc/pgerrcode v0.0.0-20201024163028-a0d42d470451 h1:WAvSpGf7MsFuzAtK4Vk7R4EVe+liW4x83r4oWu0WHKw=
github.com/jackc/pgerrcode v0.0.0-20201024163028-a0d42d470451/go.mod h1:a/s9Lp5W7n/DD0VrVoyJ00FbP2ytTPDVOivvn2bMlds=
github.com/jackc/pgio v1.0.0 h1:g12B9UwVnzGhueNavwioyEEpAmqMe1E/BN9ES+8ovkE=
github.com/jackc/pgio v1.0.0/go.mod h1:oP+2QK2wFfUWgr+gxjoBH9KGBb31Eio69xUb0w5bYf8=
github.com/jackc/pgmock v0.0.0-20190831213851-13a1b77aafa2/go.mod h1:fGZlG77KXmcq05nJLRkk0+p82V8B8Dw8KN2/V9c/OAE=
github.com/jackc/pgmock v0.0.0-20201204152224-4fe30f7445fd/go.mod h1:hrBW0Enj2AZTNpt/7Y5rr2xe/9Mn757Wtb2xeBzPv2c=
github.com/jackc/pgmock v0.0.0-20210724152146-4ad1a8207f65 h1:DadwsjnMwFjfWc9y5Wi/+Zz7xoE5ALHsRQlOctkOiHc=
github.com/jackc/pgmock v0.0.0-20210724152146-4ad1a8207f65/go.mod h1:5R2h2EEX+qri8jOWMbJCtaPWkrrNc7OHwsp2TCqp7ak=
github.com/jackc/pgpassfile v1.0.0 h1:/6Hmqy13Ss2zCq62VdNG8tM1wchn8zjSGOBJ6icpsIM=
github.com/jackc/pgpassfile v1.0.0/go.mod h1:CEx0iS5ambNFdcRtxPj5JhEz+xB6uRky5eyVu/W2HEg=
github.com/jackc/pgproto3 v1.1.0/go.mod h1:eR5FA3leWg7p9aeAqi37XOTgTIbkABlvcPB3E5rlc78=
github.com/jackc/pgproto3/v2 v2.0.0-alpha1.0.20190420180111-c116219b62db/go.mod h1:bhq50y+xrl9n5mRYyCBFKkpRVTLYJVWeCc+mEAI3yXA=
github.com/jackc/pgproto3/v2 v2.0.0-alpha1.0.20190609003834-432c2951c711/go.mod h1:uH0AWtUmuShn0bcesswc4aBTWGvw0cAxIJp+6OB//Wg=
github.com/jackc/pgproto3/v2 v2.0.0-rc3/go.mod h1:ryONWYqW6dqSg1Lw6vXNMXoBJhpzvWKnT95C46ckYeM=
github.com/jackc/pgproto3/v2 v2.0.0-rc3.0.20190831210041-4c03ce451f29/go.mod h1:ryONWYqW6dqSg1Lw6vXNMXoBJhpzvWKnT95C46ckYeM=
github.com/jackc/pgproto3/v2 v2.0.6/go.mod h1:WfJCnwN3HIg9Ish/j3sgWXnAfK8A9Y0bwXYU5xKaEdA=
github.com/jackc/pgproto3/v2 v2.1.1/go.mod h1:WfJCnwN3HIg9Ish/j3sgWXnAfK8A9Y0bwXYU5xKaEdA=
github.com/jackc/pgproto3/v2 v2.2.0 h1:r7JypeP2D3onoQTCxWdTpCtJ4D+qpKr0TxvoyMhZ5ns=
github.com/jackc/pgproto3/v2 v2.2.0/go.mod h1:WfJCnwN3HIg9Ish/j3sgWXnAfK8A9Y0bwXYU5xKaEdA=
github.com/jackc/pgservicefile v0.0.0-20200714003250-2b9c44734f2b h1:C8S2+VttkHFdOOCXJe+YGfa4vHYwlt4Zx+IVXQ97jYg=
github.com/jackc/pgservicefile v0.0.0-20200714003250-2b9c44734f2b/go.mod h1:vsD4gTJCa9TptPL8sPkXrLZ+hDuNrZCnj29CQpr4X1E=
github.com/jackc/pgtype v0.0.0-20190421001408-4ed0de4755e0/go.mod h1:hdSHsc1V01CGwFsrv11mJRHWJ6aifDLfdV3aVjFF0zg=
github.com/jackc/pgtype v0.0.0-20190824184912-ab885b375b90/go.mod h1:KcahbBH1nCMSo2DXpzsoWOAfFkdEtEJpPbVLq8eE+mc=
github.com/jackc/pgtype v0.0.0-20190828014616-a8802b16cc59/go.mod h1:MWlu30kVJrUS8lot6TQqcg7mtthZ9T0EoIBFiJcmcyw=
github.com/jackc/pgtype v1.8.1-0.20210724151600-32e20a603178/go.mod h1:C516IlIV9NKqfsMCXTdChteoXmwgUceqaLfjg2e3NlM=
github.com/jackc/pgtype v1.10.0 h1:ILnBWrRMSXGczYvmkYD6PsYyVFUNLTnIUJHHDLmqk38=
github.com/jackc/pgtype v1.10.0/go.mod h1:LUMuVrfsFfdKGLw+AFFVv6KtHOFMwRgDDzBt76IqCA4=
github.com/jackc/pgx/v4 v4.0.0-20190420224344-cc3461e65d96/go.mod h1:mdxmSJJuR08CZQyj1PVQBHy9XOp5p8/SHH6a0psbY9Y=
github.com/jackc/pgx/v4 v4.0.0-20190421002000-1b8f0016e912/go.mod h1:no/Y67Jkk/9WuGR0JG/JseM9irFbnEPbuWV2EELPNuM=
github.com/jackc/pgx/v4 v4.0.0-pre1.0.20190824185557-6972a5742186/go.mod h1:X+GQnOEnf1dqHGpw7JmHqHc1NxDoalibchSk9/RWuDc=
github.com/jackc/pgx/v4 v4.12.1-0.20210724153913-640aa07df17c/go.mod h1:1QD0+tgSXP7iUjYm9C1NxKhny7lq6ee99u/z+IHFcgs=
github.com/jackc/pgx/v4 v4.15.0 h1:B7dTkXsdILD3MF987WGGCcg+tvLW6bZJdEcqVFeU//w=
github.com/jackc/pgx/v4 v4.15.0/go.mod h1:D/zyOyXiaM1TmVWnOM18p0xdDtdakRBa0RsVGI3U3bw=
github.com/jackc/puddle v0.0.0-20190413234325-e4ced69a3a2b/go.mod h1:m4B5Dj62Y0fbyuIc15OsIqK0+JU8nkqQjsgx7dvjSWk=
github.com/jackc/puddle v0.0.0-20190608224051-11cab39313c9/go.mod h1:m4B5Dj62Y0fbyuIc15OsIqK0+JU8nkqQjsgx7dvjSWk=
github.com/jackc/puddle v1.1.3/go.mod h1:m4B5Dj62Y0fbyuIc15OsIqK0+JU8nkqQjsgx7dvjSWk=
github.com/jackc/puddle v1.2.1/go.mod h1:m4B5Dj62Y0fbyuIc15OsIqK0+JU8nkqQjsgx7dvjSWk=
github.com/jellevandenhooff/dkim v0.0.0-20150330215556-f50fe3d243e1/go.mod h1:E0B/fFc00Y+Rasa88328GlI/XbtyysCtTHZS8h7IrBU=
github.com/jonboulle/clockwork v0.1.0/go.mod h1:Ii8DK3G1RaLaWxj9trq07+26W01tbo22gdxWY5EU2bo=
github.com/json-iterator/go v1.1.6/go.mod h1:+SdeFBvtyEkXs7REEP0seUULqWtbJapLOCVDaaPEHmU=
github.com/jstemmer/go-junit-report v0.0.0-20190106144839-af01ea7f8024/go.mod h1:6v2b51hI/fHJwM22ozAgKL4VKDeJcHhJFhtBdhmNjmU=
github.com/jstemmer/go-junit-report v0.9.1 h1:6QPYqodiu3GuPL+7mfx+NwDdp2eTkp9IfEUpgAwUN0o=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/jstemmer/go-junit-report v0.9.1/go.mod h1:Brl9GWCQeLvo8nXZwPNNblvFj/XSXhF0NWZEnDohbsk=
github.com/jtolds/gls v4.20.0+incompatible h1:xdiiI2gbIgH/gLH7ADydsJ1uDOEzR8yvV7C0MuV77Wo=
github.com/jtolds/gls v4.20.0+incompatible/go.mod h1:QJZ7F/aHp+rZTRtaJ1ow/lLfFfVYBRgL+9YlvaHOwJU=
github.com/jtolds/monkit-hw/v2 v2.0.0-20191108235325-141a0da276b3 h1:dITCBge70U9RDyZUL/Thn/yAT/ct4Rz40mNUX51dFCk=
github.com/jtolds/monkit-hw/v2 v2.0.0-20191108235325-141a0da276b3/go.mod h1:eo5po8nCwRcvZIIR8eGi7PKthzXuunpXzUmXzxCBfBc=
github.com/jtolds/tracetagger/v2 v2.0.0-rc5 h1:SriMFVtftPsQmG+0xaABotz9HnoKoo1QM/oggqfpGh8=
github.com/jtolds/tracetagger/v2 v2.0.0-rc5/go.mod h1:61Fh+XhbBONy+RsqkA+xTtmaFbEVL040m9FAF/hTrjQ=
github.com/jtolio/eventkit v0.0.0-20221007130042-690145affff8 h1:Jm6SYrxKgQMKHUVLhV9qc2Y7PuSQRKUxxk/NSrtaxdQ=
github.com/jtolio/eventkit v0.0.0-20221007130042-690145affff8/go.mod h1:q7yMR8BavTz/gBNtIT/uF487LMgcuEpNGKISLAjNQes=
github.com/jtolio/noiseconn v0.0.0-20230301220541-88105e6c8ac6 h1:iVMQyk78uOpX/UKjEbzyBdptXgEz6jwGwo7kM9IQ+3U=
github.com/jtolio/noiseconn v0.0.0-20230301220541-88105e6c8ac6/go.mod h1:MEkhEPFwP3yudWO0lj6vfYpLIB+3eIcuIW+e0AZzUQk=
github.com/julienschmidt/httprouter v1.2.0/go.mod h1:SYymIcj16QtmaHHD7aYtjjsJG7VTCxuUUipMqKk8s4w=
github.com/k0kubun/colorstring v0.0.0-20150214042306-9440f1994b88/go.mod h1:3w7q1U84EfirKl04SVQ/s7nPm1ZPhiXd34z40TNz36k=
github.com/kisielk/errcheck v1.1.0/go.mod h1:EZBBE59ingxPouuu3KfxchcWSUPOHkagtvWXihfKN4Q=
github.com/kisielk/errcheck v1.5.0/go.mod h1:pFxgyoBC7bSaBwPgfKdkLd5X25qrDl4LWUI2bnpBCr8=
2018-10-06 18:57:53 +01:00
github.com/kisielk/gotool v1.0.0/go.mod h1:XhKaO+MFFWcvkIS/tQcRk01m1F5IRFswLeQ+oQHNcck=
github.com/klauspost/compress v1.10.4/go.mod h1:aoV0uJVorq1K+umq18yTdKaF57EivdYsUV+/s2qKfXs=
github.com/klauspost/compress v1.10.10/go.mod h1:aoV0uJVorq1K+umq18yTdKaF57EivdYsUV+/s2qKfXs=
github.com/klauspost/compress v1.15.10 h1:Ai8UzuomSCDw90e1qNMtb15msBXsNpH6gzkkENQNcJo=
github.com/klauspost/compress v1.15.10/go.mod h1:QPwzmACJjUTFsnSHH934V6woptycfrDDJnH7hvFVbGM=
github.com/klauspost/cpuid/v2 v2.0.12 h1:p9dKCg8i4gmOxtv35DvrYoWqYzQrvEVdjQ762Y0OqZE=
github.com/klauspost/cpuid/v2 v2.0.12/go.mod h1:g2LTdtYhdyuGPqyWyv7qRAmj1WBqxuObKfj5c0PQa7c=
github.com/konsorten/go-windows-terminal-sequences v1.0.1/go.mod h1:T0+1ngSBFLxvqU3pZ+m/2kptfBszLMUkC4ZK/EgS/cQ=
github.com/konsorten/go-windows-terminal-sequences v1.0.2/go.mod h1:T0+1ngSBFLxvqU3pZ+m/2kptfBszLMUkC4ZK/EgS/cQ=
github.com/kr/fs v0.1.0/go.mod h1:FFnZGqtBN9Gxj7eW1uZ42v5BccTP0vu6NEaFoC2HwRg=
github.com/kr/logfmt v0.0.0-20140226030751-b84e30acd515/go.mod h1:+0opPa2QZZtGFBFZlji/RkVcI2GknAs/DXo4wKdlNEc=
2018-10-06 18:57:53 +01:00
github.com/kr/pretty v0.1.0/go.mod h1:dAy3ld7l9f0ibDNOQOHHMYYIIbhfbHSm3C4ZsoJORNo=
github.com/kr/pretty v0.2.1/go.mod h1:ipq/a2n7PKx3OHsz4KJII5eveXtPO4qwEXGdVfWzfnI=
github.com/kr/pretty v0.3.1 h1:flRD4NNwYAUpkphVc1HcthR4KEIFJ65n8Mw5qdRn3LE=
2018-10-06 18:57:53 +01:00
github.com/kr/pty v1.1.1/go.mod h1:pFQYn66WHrOpPYNljwOMqo10TkYh1fy3cYio2l3bCsQ=
github.com/kr/pty v1.1.3/go.mod h1:pFQYn66WHrOpPYNljwOMqo10TkYh1fy3cYio2l3bCsQ=
github.com/kr/pty v1.1.8/go.mod h1:O1sed60cT9XZ5uDucP5qwvh+TE3NnUj51EiZO/lmSfw=
2018-10-06 18:57:53 +01:00
github.com/kr/text v0.1.0/go.mod h1:4Jbv+DJW3UT/LiOwJeYQe1efqtUx/iVham/4vfdArNI=
github.com/kr/text v0.2.0 h1:5Nx0Ya0ZqY2ygV366QzturHI13Jq95ApcVaJBhpS+AY=
github.com/lib/pq v1.0.0/go.mod h1:5WUZQaWbwv1U+lTReE5YruASi9Al49XbQIvNi/34Woo=
github.com/lib/pq v1.1.0/go.mod h1:5WUZQaWbwv1U+lTReE5YruASi9Al49XbQIvNi/34Woo=
github.com/lib/pq v1.2.0/go.mod h1:5WUZQaWbwv1U+lTReE5YruASi9Al49XbQIvNi/34Woo=
github.com/lib/pq v1.10.2 h1:AqzbZs4ZoCBp+GtejcpCpcxM3zlSMx29dXbUSeVtJb8=
github.com/lib/pq v1.10.2/go.mod h1:AlVN5x4E4T544tWzH6hKfbfQvm3HdbOxrmggDNAPY9o=
github.com/loov/hrtime v1.0.3 h1:LiWKU3B9skJwRPUf0Urs9+0+OE3TxdMuiRPOTwR0gcU=
github.com/loov/hrtime v1.0.3/go.mod h1:yDY3Pwv2izeY4sq7YcPX/dtLwzg5NU1AxWuWxKwd0p0=
github.com/lucas-clemente/quic-go v0.27.1/go.mod h1:AzgQoPda7N+3IqMMMkywBKggIFo2KT6pfnlrQ2QieeI=
github.com/lunixbochs/vtclean v1.0.0/go.mod h1:pHhQNgMf3btfWnGBVipUOjRYhoOsdGqdm/+2c2E2WMI=
github.com/magiconair/properties v1.8.1/go.mod h1:PppfXfuXeibc/6YijjN8zIbojt8czPbwD3XqdrwzmxQ=
github.com/magiconair/properties v1.8.5 h1:b6kJs+EmPFMYGkow9GiUyCyOvIwYetYJ3fSaWak/Gls=
github.com/magiconair/properties v1.8.5/go.mod h1:y3VJvCyxH9uVvJTWEGAELF3aiYNyPKd5NZ3oSwXrF60=
github.com/mailru/easyjson v0.0.0-20190312143242-1de009706dbe/go.mod h1:C1wdFJiN94OJF2b5HbByQZoLdCWB1Yqtg26g4irojpc=
github.com/marten-seemann/qpack v0.2.1/go.mod h1:F7Gl5L1jIgN1D11ucXefiuJS9UMVP2opoCp2jDKb7wc=
github.com/marten-seemann/qtls-go1-16 v0.1.5/go.mod h1:gNpI2Ol+lRS3WwSOtIUUtRwZEQMXjYK+dQSBFbethAk=
github.com/marten-seemann/qtls-go1-17 v0.1.1/go.mod h1:C2ekUKcDdz9SDWxec1N/MvcXBpaX9l3Nx67XaR84L5s=
github.com/marten-seemann/qtls-go1-18 v0.1.1/go.mod h1:mJttiymBAByA49mhlNZZGrH5u1uXYZJ+RW28Py7f4m4=
github.com/mattn/go-colorable v0.0.9/go.mod h1:9vuHe8Xs5qXnSaW/c/ABM9alt+Vo+STaOChaDxuIBZU=
github.com/mattn/go-colorable v0.1.1/go.mod h1:FuOcm+DKB9mbwrcAfNl7/TZVBZ6rcnceauSikq3lYCQ=
github.com/mattn/go-colorable v0.1.4/go.mod h1:U0ppj6V5qS13XJ6of8GYAs25YV2eR4EVcfRqFIhoBtE=
github.com/mattn/go-colorable v0.1.6/go.mod h1:u6P/XSegPjTcexA+o6vUJrdnUu04hMope9wVRipJSqc=
github.com/mattn/go-colorable v0.1.7 h1:bQGKb3vps/j0E9GfJQ03JyhRuxsvdAanXlT9BTw3mdw=
github.com/mattn/go-colorable v0.1.7/go.mod h1:u6P/XSegPjTcexA+o6vUJrdnUu04hMope9wVRipJSqc=
github.com/mattn/go-isatty v0.0.3/go.mod h1:M+lRXTBqGeGNdLjl/ufCoiOlB5xdOkqRJdNxMWT7Zi4=
github.com/mattn/go-isatty v0.0.5/go.mod h1:Iq45c/XA43vh69/j3iqttzPXn0bhXyGjM0Hdxcsrc5s=
github.com/mattn/go-isatty v0.0.7/go.mod h1:Iq45c/XA43vh69/j3iqttzPXn0bhXyGjM0Hdxcsrc5s=
github.com/mattn/go-isatty v0.0.8/go.mod h1:Iq45c/XA43vh69/j3iqttzPXn0bhXyGjM0Hdxcsrc5s=
github.com/mattn/go-isatty v0.0.11/go.mod h1:PhnuNfih5lzO57/f3n+odYbM4JtupLOxQOAqxQCu2WE=
github.com/mattn/go-isatty v0.0.12 h1:wuysRhFDzyxgEmMf5xjvJ2M9dZoWAXNNr5LSBS7uHXY=
github.com/mattn/go-isatty v0.0.12/go.mod h1:cbi8OIDigv2wuxKPP5vlRcQ1OAZbq2CE4Kysco4FUpU=
github.com/mattn/go-runewidth v0.0.14 h1:+xnbZSEeDbOIg5/mE6JF0w6n9duR1l3/WmbinWVwUuU=
github.com/mattn/go-runewidth v0.0.14/go.mod h1:Jdepj2loyihRzMpdS35Xk/zdY8IAYHsh153qUoGf23w=
github.com/mattn/go-sqlite3 v1.14.12 h1:TJ1bhYJPV44phC+IMu1u2K/i5RriLTPe+yc68XDJ1Z0=
github.com/mattn/go-sqlite3 v1.14.12/go.mod h1:NyWgC/yNuGj7Q9rpYnZvas74GogHl5/Z4A/KQRfk6bU=
2018-10-06 18:57:53 +01:00
github.com/matttproud/golang_protobuf_extensions v1.0.1/go.mod h1:D8He9yQNgCq6Z5Ld7szi9bcBfOoFv/3dc6xSMkL2PC0=
github.com/microcosm-cc/bluemonday v1.0.1/go.mod h1:hsXNsILzKxV+sX77C5b8FSuKF00vh2OMYv+xgHpAMF4=
github.com/miekg/dns v1.0.14/go.mod h1:W1PPwlIAgtquWBMBEV9nkV9Cazfe8ScdGz/Lj7v3Nrg=
github.com/mitchellh/cli v1.0.0/go.mod h1:hNIlj7HEI86fIcpObd7a0FcrxTWetlwJDGcceTlRvqc=
github.com/mitchellh/go-homedir v1.0.0/go.mod h1:SfyaCUpYCn1Vlf4IUYiD9fPX4A5wJrkLzIz1N1q0pr0=
github.com/mitchellh/go-homedir v1.1.0/go.mod h1:SfyaCUpYCn1Vlf4IUYiD9fPX4A5wJrkLzIz1N1q0pr0=
github.com/mitchellh/go-testing-interface v1.0.0/go.mod h1:kRemZodwjscx+RGhAo8eIhFbs2+BFgRtFPeD/KE+zxI=
github.com/mitchellh/gox v0.4.0/go.mod h1:Sd9lOJ0+aimLBi73mGofS1ycjY8lL3uZM3JPS42BGNg=
github.com/mitchellh/iochan v1.0.0/go.mod h1:JwYml1nuB7xOzsp52dPpHFffvOCDupsG0QubkSMEySY=
github.com/mitchellh/mapstructure v0.0.0-20160808181253-ca63d7c062ee/go.mod h1:FVVH3fgwuzCH5S8UJGiWEs2h04kUh9fWfEaFds41c1Y=
github.com/mitchellh/mapstructure v1.1.2/go.mod h1:FVVH3fgwuzCH5S8UJGiWEs2h04kUh9fWfEaFds41c1Y=
github.com/mitchellh/mapstructure v1.4.1 h1:CpVNEelQCZBooIPDn+AR3NpivK/TIKU8bDxdASFVQag=
github.com/mitchellh/mapstructure v1.4.1/go.mod h1:bFUtVrKA4DC2yAKiSyO/QUcy7e+RRV2QTWOzhPopBRo=
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd/go.mod h1:6dJC0mAP4ikYIbvyc7fijjWJddQyLn8Ig3JB5CqoB9Q=
github.com/modern-go/reflect2 v1.0.1/go.mod h1:bx2lNnkwVCuqBIxFjflWJWanXIb3RllmbCylyMrvgv0=
github.com/moul/http2curl v1.0.0 h1:dRMWoAtb+ePxMlLkrCbAqh4TlPHXvoGUSQ323/9Zahs=
github.com/moul/http2curl v1.0.0/go.mod h1:8UbvGypXm98wA/IqH45anm5Y2Z6ep6O31QGOAZ3H0fQ=
github.com/mwitkow/go-conntrack v0.0.0-20161129095857-cc309e4a2223/go.mod h1:qRWi+5nqEBWmkhHvq77mSJWrCKwh8bxhgT7d/eI7P4U=
github.com/neelance/astrewrite v0.0.0-20160511093645-99348263ae86/go.mod h1:kHJEU3ofeGjhHklVoIGuVj85JJwZ6kWPaJwCIxgnFmo=
github.com/neelance/sourcemap v0.0.0-20151028013722-8c68805598ab/go.mod h1:Qr6/a/Q4r9LP1IltGz7tA7iOK1WonHEYhu1HRBA7ZiM=
github.com/nsf/jsondiff v0.0.0-20200515183724-f29ed568f4ce h1:RPclfga2SEJmgMmz2k+Mg7cowZ8yv4Trqw9UsJby758=
github.com/nsf/jsondiff v0.0.0-20200515183724-f29ed568f4ce/go.mod h1:uFMI8w+ref4v2r9jz+c9i1IfIttS/OkmLfrk1jne5hs=
github.com/nsf/termbox-go v0.0.0-20200418040025-38ba6e5628f1 h1:lh3PyZvY+B9nFliSGTn5uFuqQQJGuNrD0MLCokv09ag=
github.com/nsf/termbox-go v0.0.0-20200418040025-38ba6e5628f1/go.mod h1:IuKpRQcYE1Tfu+oAQqaLisqDeXgjyyltCfsaoYN18NQ=
github.com/nxadm/tail v1.4.4/go.mod h1:kenIhsEOeOJmVchQTgglprH7qJGnHDVpk1VPCcaMI8A=
github.com/nxadm/tail v1.4.8 h1:nPr65rt6Y5JFSKQO7qToXr7pePgD6Gwiw05lkbyAQTE=
github.com/nxadm/tail v1.4.8/go.mod h1:+ncqLTQzXmGhMZNUePPaPqPvBxHAIsmXswZKocGu+AU=
github.com/oklog/ulid v1.3.1/go.mod h1:CirwcVhetQ6Lv90oh/F+FBtV6XMibvdAFo93nm5qn4U=
2018-10-06 18:57:53 +01:00
github.com/onsi/ginkgo v1.6.0/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE=
github.com/onsi/ginkgo v1.10.3/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE=
github.com/onsi/ginkgo v1.12.1/go.mod h1:zj2OWP4+oCPe1qIXoGWkgMRwljMUYCdkwsT2108oapk=
github.com/onsi/ginkgo v1.13.0/go.mod h1:+REjRxOmWfHCjfv9TTWB1jD1Frx4XydAD3zm1lskyM0=
github.com/onsi/ginkgo v1.14.0/go.mod h1:iSB4RoI2tjJc9BBv4NKIKWKya62Rps+oPG/Lv9klQyY=
github.com/onsi/ginkgo v1.16.2/go.mod h1:CObGmKUOKaSC0RjmoAK7tKyn4Azo5P2IWuoMnvwxz1E=
github.com/onsi/ginkgo v1.16.4/go.mod h1:dX+/inL/fNMqNlz0e9LfyB9TswhZpCVdJM/Z6Vvnwo0=
github.com/onsi/ginkgo v1.16.5 h1:8xi0RTUf59SOSfEtZMvwTvXYMzG4gV23XVHOZiXNtnE=
github.com/onsi/ginkgo v1.16.5/go.mod h1:+E8gABHa3K6zRBolWtd+ROzc/U5bkGt0FwiG042wbpU=
github.com/onsi/ginkgo/v2 v2.2.0 h1:3ZNA3L1c5FYDFTTxbFeVGGD8jYvjYauHD30YgLxVsNI=
github.com/onsi/ginkgo/v2 v2.2.0/go.mod h1:MEH45j8TBi6u9BMogfbp0stKC5cdGjumZj5Y7AG4VIk=
github.com/onsi/gomega v1.7.1/go.mod h1:XdKZgCCFLUoM/7CFJVPcG8C1xQ1AJ0vpAezJrB7JYyY=
github.com/onsi/gomega v1.10.1/go.mod h1:iN09h71vgCQne3DLsj+A5owkum+a2tYe+TOCB1ybHNo=
github.com/onsi/gomega v1.13.0/go.mod h1:lRk9szgn8TxENtWd0Tp4c3wjlRfMTMH27I+3Je41yGY=
github.com/onsi/gomega v1.20.1 h1:PA/3qinGoukvymdIDV8pii6tiZgC8kbmJO6Z5+b002Q=
github.com/openzipkin/zipkin-go v0.1.1/go.mod h1:NtoC/o8u3JlF1lSlyPNswIbeQH9bJTmOf0Erfk+hxe8=
github.com/oschwald/maxminddb-golang v1.8.0 h1:Uh/DSnGoxsyp/KYbY1AuP0tYEwfs0sCph9p/UMXK/Hk=
github.com/oschwald/maxminddb-golang v1.8.0/go.mod h1:RXZtst0N6+FY/3qCNmZMBApR19cdQj43/NM9VkrNAis=
github.com/pascaldekloe/goe v0.0.0-20180627143212-57f6aae5913c/go.mod h1:lzWF7FIEvWOWxwDKqyGYQf6ZUaNfKdP144TG7ZOy1lc=
2018-10-06 18:57:53 +01:00
github.com/pelletier/go-toml v1.2.0/go.mod h1:5z9KED0ma1S8pY6P1sdut58dfprrGBbd/94hg7ilaic=
github.com/pelletier/go-toml v1.9.0 h1:NOd0BRdOKpPf0SxkL3HxSQOG7rNh+4kl6PHcBPFs7Q0=
github.com/pelletier/go-toml v1.9.0/go.mod h1:u1nR/EPcESfeI/szUZKdtJ0xRNbUoANCkoOuaOx1Y+c=
2018-10-06 18:57:53 +01:00
github.com/pkg/errors v0.8.0/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
2019-01-07 19:11:11 +00:00
github.com/pkg/errors v0.8.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
github.com/pkg/sftp v1.10.1/go.mod h1:lYOWFsE0bwd1+KfKJaKeuokY15vzFx25BLbzYYoAxZI=
2018-10-06 18:57:53 +01:00
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/posener/complete v1.1.1/go.mod h1:em0nMJCgc9GFtwrmVmEMR/ZL6WyhyjMBndrE9hABlRI=
github.com/pquerna/otp v1.3.0 h1:oJV/SkzR33anKXwQU3Of42rL4wbrffP4uvUf1SvS5Xs=
github.com/pquerna/otp v1.3.0/go.mod h1:dkJfzwRKNiegxyNb54X/3fLwhCynbMspSyWKnvi1AEg=
github.com/prometheus/client_golang v0.8.0/go.mod h1:7SWBe2y4D6OKWSNQJUaRYU/AaXPKyh/dDVn+NZz0KFw=
github.com/prometheus/client_golang v0.9.1/go.mod h1:7SWBe2y4D6OKWSNQJUaRYU/AaXPKyh/dDVn+NZz0KFw=
github.com/prometheus/client_golang v0.9.3/go.mod h1:/TN21ttK/J9q6uSwhBd54HahCDft0ttaMvbicHlPoso=
github.com/prometheus/client_model v0.0.0-20180712105110-5c3871d89910/go.mod h1:MbSGuTsp3dbXC40dX6PRTWyKYBIrTGTE9sqQNg2J8bo=
github.com/prometheus/client_model v0.0.0-20190129233127-fd36f4220a90/go.mod h1:xMI15A0UPsDsEKsMN9yxemIoYk6Tm2C1GtYGdfGttqA=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/prometheus/client_model v0.0.0-20190812154241-14fe0d1b01d4/go.mod h1:xMI15A0UPsDsEKsMN9yxemIoYk6Tm2C1GtYGdfGttqA=
github.com/prometheus/common v0.0.0-20180801064454-c7de2306084e/go.mod h1:daVV7qP5qjZbuso7PdcryaAu0sAZbrN9i7WWcTMWvro=
github.com/prometheus/common v0.0.0-20181113130724-41aa239b4cce/go.mod h1:daVV7qP5qjZbuso7PdcryaAu0sAZbrN9i7WWcTMWvro=
github.com/prometheus/common v0.4.0/go.mod h1:TNfzLD0ON7rHzMJeJkieUDPYmFC7Snx/y86RQel1bk4=
github.com/prometheus/procfs v0.0.0-20180725123919-05ee40e3a273/go.mod h1:c3At6R/oaqEKCNdg8wHV1ftS6bRYblBhIjjI8uT2IGk=
github.com/prometheus/procfs v0.0.0-20181005140218-185b4288413d/go.mod h1:c3At6R/oaqEKCNdg8wHV1ftS6bRYblBhIjjI8uT2IGk=
github.com/prometheus/procfs v0.0.0-20190507164030-5867b95ac084/go.mod h1:TjEm7ze935MbeOT/UhFTIMYKhuLP4wbCsTZCD3I8kEA=
github.com/prometheus/tsdb v0.7.1/go.mod h1:qhTCs0VvXwvX/y3TZrWD7rabWM+ijKTux40TwIPHuXU=
github.com/quic-go/qtls-go1-18 v0.2.0 h1:5ViXqBZ90wpUcZS0ge79rf029yx0dYB0McyPJwqqj7U=
github.com/quic-go/qtls-go1-18 v0.2.0/go.mod h1:moGulGHK7o6O8lSPSZNoOwcLvJKJ85vVNc7oJFD65bc=
github.com/quic-go/qtls-go1-19 v0.2.0 h1:Cvn2WdhyViFUHoOqK52i51k4nDX8EwIh5VJiVM4nttk=
github.com/quic-go/qtls-go1-19 v0.2.0/go.mod h1:ySOI96ew8lnoKPtSqx2BlI5wCpUVPT05RMAlajtnyOI=
github.com/quic-go/qtls-go1-20 v0.1.0 h1:d1PK3ErFy9t7zxKsG3NXBJXZjp/kMLoIb3y/kV54oAI=
github.com/quic-go/qtls-go1-20 v0.1.0/go.mod h1:JKtK6mjbAVcUTN/9jZpvLbGxvdWIKS8uT7EiStoU1SM=
github.com/quic-go/quic-go v0.32.0 h1:lY02md31s1JgPiiyfqJijpu/UX/Iun304FI3yUqX7tA=
github.com/quic-go/quic-go v0.32.0/go.mod h1:/fCsKANhQIeD5l76c2JFU+07gVE3KaA0FP+0zMWwfwo=
github.com/redis/go-redis/v9 v9.0.3 h1:+7mmR26M0IvyLxGZUHxu4GiBkJkVDid0Un+j4ScYu4k=
github.com/redis/go-redis/v9 v9.0.3/go.mod h1:WqMKv5vnQbRuZstUwxQI195wHy+t4PuXDOjzMvcuQHk=
github.com/rivo/uniseg v0.2.0/go.mod h1:J6wj4VEh+S6ZtnVlnTBMWIodfgj8LQOQFoIToxlJtxc=
github.com/rivo/uniseg v0.4.4 h1:8TfxU8dW6PdqD27gjM8MVNuicgxIjxpm4K7x4jp8sis=
github.com/rivo/uniseg v0.4.4/go.mod h1:FN3SvrM+Zdj16jyLfmOkMNblXMcoc8DfTHruCPUcx88=
github.com/rogpeppe/fastuuid v0.0.0-20150106093220-6724a57986af/go.mod h1:XWv6SoW27p1b0cqNHllgS5HIMJraePCO15w5zCzIWYg=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
github.com/rogpeppe/go-internal v1.3.0/go.mod h1:M8bDsm7K2OlrFYOpmOWEs/qY81heoFRclV5y23lUDJ4=
github.com/rogpeppe/go-internal v1.9.0 h1:73kH8U+JUqXU8lRuOHeVHaa/SZPifC7BkcraZVejAe8=
github.com/rs/xid v1.2.1/go.mod h1:+uKXf+4Djp6Md1KODXJxgGQPKngRmWyn10oCKFzNHOQ=
github.com/rs/zerolog v1.13.0/go.mod h1:YbFCdg8HfsridGWAh22vktObvhZbQsZXe4/zB0OKkWU=
github.com/rs/zerolog v1.15.0/go.mod h1:xYTKnLHcpfU2225ny5qZjxnj9NvkumZYjJHlAThCjNc=
github.com/russross/blackfriday v1.5.2/go.mod h1:JO/DiYxRf+HjHt06OyowR9PTA263kcR/rfWxYHBV53g=
github.com/russross/blackfriday/v2 v2.0.1/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
github.com/ryanuber/columnize v0.0.0-20160712163229-9b3edd62028f/go.mod h1:sm1tb6uqfes/u+d4ooFouqFdy9/2g9QGwK3SQygK0Ts=
github.com/satori/go.uuid v1.2.0/go.mod h1:dA0hQrYB0VpLJoorglMZABFdXlWrHn1NEOzdhQKdks0=
github.com/sclevine/agouti v3.0.0+incompatible/go.mod h1:b4WX9W9L1sfQKXeJf1mUTLZKJ48R1S7H23Ji7oFO5Bw=
github.com/sean-/seed v0.0.0-20170313163322-e2103e2c3529/go.mod h1:DxrIzT+xaE7yg65j358z/aeFdxmN0P9QXhEzd20vsDc=
github.com/segmentio/backo-go v0.0.0-20200129164019-23eae7c10bd3 h1:ZuhckGJ10ulaKkdvJtiAqsLTiPrLaXSdnVgXJKJkTxE=
github.com/segmentio/backo-go v0.0.0-20200129164019-23eae7c10bd3/go.mod h1:9/Rh6yILuLysoQnZ2oNooD2g7aBnvM7r/fNVxRNWfBc=
github.com/sergi/go-diff v1.0.0/go.mod h1:0CfEIISq7TuYL3j771MWULgwwjU+GofnZX9QAmXWZgo=
github.com/sergi/go-diff v1.1.0 h1:we8PVUC3FE2uYfodKH/nBHMSetSfHDR6scGdBi+erh0=
github.com/sergi/go-diff v1.1.0/go.mod h1:STckp+ISIX8hZLjrqAeVduY0gWCT9IjLuqbuNXdaHfM=
github.com/shopspring/decimal v0.0.0-20180709203117-cd690d0c9e24/go.mod h1:M+9NzErvs504Cn4c5DxATwIqPbtswREoFCre64PpcG4=
github.com/shopspring/decimal v1.2.0 h1:abSATXmQEYyShuxI4/vyW3tV1MrKAJzCZ/0zLUXYbsQ=
github.com/shopspring/decimal v1.2.0/go.mod h1:DKyhrW/HYNuLGql+MJL6WCR6knT2jwCFRcu2hWCYk4o=
github.com/shurcooL/component v0.0.0-20170202220835-f88ec8f54cc4/go.mod h1:XhFIlyj5a1fBNx5aJTbKoIq0mNaPvOagO+HjB3EtxrY=
github.com/shurcooL/events v0.0.0-20181021180414-410e4ca65f48/go.mod h1:5u70Mqkb5O5cxEA8nxTsgrgLehJeAw6Oc4Ab1c/P1HM=
github.com/shurcooL/github_flavored_markdown v0.0.0-20181002035957-2122de532470/go.mod h1:2dOwnU2uBioM+SGy2aZoq1f/Sd1l9OkAeAUvjSyvgU0=
github.com/shurcooL/go v0.0.0-20180423040247-9e1955d9fb6e/go.mod h1:TDJrrUr11Vxrven61rcy3hJMUqaf/CLWYhHNPmT14Lk=
github.com/shurcooL/go-goon v0.0.0-20170922171312-37c2f522c041/go.mod h1:N5mDOmsrJOB+vfqUK+7DmDyjhSLIIBnXo9lvZJj3MWQ=
github.com/shurcooL/gofontwoff v0.0.0-20180329035133-29b52fc0a18d/go.mod h1:05UtEgK5zq39gLST6uB0cf3NEHjETfB4Fgr3Gx5R9Vw=
github.com/shurcooL/gopherjslib v0.0.0-20160914041154-feb6d3990c2c/go.mod h1:8d3azKNyqcHP1GaQE/c6dDgjkgSx2BZ4IoEi4F1reUI=
github.com/shurcooL/highlight_diff v0.0.0-20170515013008-09bb4053de1b/go.mod h1:ZpfEhSmds4ytuByIcDnOLkTHGUI6KNqRNPDLHDk+mUU=
github.com/shurcooL/highlight_go v0.0.0-20181028180052-98c3abbbae20/go.mod h1:UDKB5a1T23gOMUJrI+uSuH0VRDStOiUVSjBTRDVBVag=
github.com/shurcooL/home v0.0.0-20181020052607-80b7ffcb30f9/go.mod h1:+rgNQw2P9ARFAs37qieuu7ohDNQ3gds9msbT2yn85sg=
github.com/shurcooL/htmlg v0.0.0-20170918183704-d01228ac9e50/go.mod h1:zPn1wHpTIePGnXSHpsVPWEktKXHr6+SS6x/IKRb7cpw=
github.com/shurcooL/httperror v0.0.0-20170206035902-86b7830d14cc/go.mod h1:aYMfkZ6DWSJPJ6c4Wwz3QtW22G7mf/PEgaB9k/ik5+Y=
github.com/shurcooL/httpfs v0.0.0-20171119174359-809beceb2371/go.mod h1:ZY1cvUeJuFPAdZ/B6v7RHavJWZn2YPVFQ1OSXhCGOkg=
github.com/shurcooL/httpgzip v0.0.0-20180522190206-b1c53ac65af9/go.mod h1:919LwcH0M7/W4fcZ0/jy0qGght1GIhqyS/EgWGH2j5Q=
github.com/shurcooL/issues v0.0.0-20181008053335-6292fdc1e191/go.mod h1:e2qWDig5bLteJ4fwvDAc2NHzqFEthkqn7aOZAOpj+PQ=
github.com/shurcooL/issuesapp v0.0.0-20180602232740-048589ce2241/go.mod h1:NPpHK2TI7iSaM0buivtFUc9offApnI0Alt/K8hcHy0I=
github.com/shurcooL/notifications v0.0.0-20181007000457-627ab5aea122/go.mod h1:b5uSkrEVM1jQUspwbixRBhaIjIzL2xazXp6kntxYle0=
github.com/shurcooL/octicon v0.0.0-20181028054416-fa4f57f9efb2/go.mod h1:eWdoE5JD4R5UVWDucdOPg1g2fqQRq78IQa9zlOV1vpQ=
github.com/shurcooL/reactions v0.0.0-20181006231557-f2e0b4ca5b82/go.mod h1:TCR1lToEk4d2s07G3XGfz2QrgHXg4RJBvjrOozvoWfk=
github.com/shurcooL/sanitized_anchor_name v0.0.0-20170918181015-86672fcb3f95/go.mod h1:1NzhyTcUVG4SuEtjjoZeVRXNmyL/1OwPU0+IJeTBvfc=
github.com/shurcooL/sanitized_anchor_name v1.0.0/go.mod h1:1NzhyTcUVG4SuEtjjoZeVRXNmyL/1OwPU0+IJeTBvfc=
github.com/shurcooL/users v0.0.0-20180125191416-49c67e49c537/go.mod h1:QJTqeLYEDaXHZDBsXlPCDqdhQuJkuw4NOtaxYe3xii4=
github.com/shurcooL/webdavfs v0.0.0-20170829043945-18c3829fa133/go.mod h1:hKmq5kWdCj2z2KEozexVbfEZIWiTjhE0+UjmZgPqehw=
github.com/sirupsen/logrus v1.2.0/go.mod h1:LxeOpSwHxABJmUn/MG1IvRgCAasNZTLOkJPxbbu5VWo=
github.com/sirupsen/logrus v1.4.1/go.mod h1:ni0Sbl8bgC9z8RoU9G6nDWqqs/fq4eDPysMBDgk/93Q=
github.com/sirupsen/logrus v1.4.2/go.mod h1:tLMulIdttU9McNUspp0xgXVQah82FyeX6MwdIuYE2rE=
github.com/smartystreets/assertions v0.0.0-20180927180507-b2de0cb4f26d h1:zE9ykElWQ6/NYmHa3jpm/yHnI4xSofP+UP6SpjHcSeM=
github.com/smartystreets/assertions v0.0.0-20180927180507-b2de0cb4f26d/go.mod h1:OnSkiWE9lh6wB0YB77sQom3nweQdgAjqCqsofrRNTgc=
github.com/smartystreets/goconvey v1.6.4 h1:fv0U8FUIMPNf1L9lnHLvLhgicrIVChEkdzIKYqbNC9s=
github.com/smartystreets/goconvey v1.6.4/go.mod h1:syvi0/a8iFYH4r/RixwvyeAJjdLS9QV7WQ/tjFTllLA=
github.com/soheilhy/cmux v0.1.4/go.mod h1:IM3LyeVVIOuxMH7sFAkER9+bJ4dT7Ms6E4xg4kGIyLM=
github.com/sourcegraph/annotate v0.0.0-20160123013949-f4cad6c6324d/go.mod h1:UdhH50NIW0fCiwBSr0co2m7BnFLdv4fQTgdqdJTHFeE=
github.com/sourcegraph/syntaxhighlight v0.0.0-20170531221838-bd320f5d308e/go.mod h1:HuIsMU8RRBOtsCgI77wP899iHVBQpCmg4ErYMZB+2IA=
github.com/spacemonkeygo/monkit/v3 v3.0.0-20191108235033-eacca33b3037/go.mod h1:JcK1pCbReQsOsMKF/POFSZCq7drXFybgGmbc27tuwes=
github.com/spacemonkeygo/monkit/v3 v3.0.4/go.mod h1:JcK1pCbReQsOsMKF/POFSZCq7drXFybgGmbc27tuwes=
github.com/spacemonkeygo/monkit/v3 v3.0.18/go.mod h1:kj1ViJhlyADa7DiA4xVnTuPA46lFKbM7mxQTrXCuJP4=
github.com/spacemonkeygo/monkit/v3 v3.0.20-0.20230227152157-d00b379de191 h1:QVUfVxilbPp8fBJ7701LL/WEUjBSiSxbs9LUaCIe5qM=
github.com/spacemonkeygo/monkit/v3 v3.0.20-0.20230227152157-d00b379de191/go.mod h1:kj1ViJhlyADa7DiA4xVnTuPA46lFKbM7mxQTrXCuJP4=
2018-10-06 18:57:53 +01:00
github.com/spacemonkeygo/monotime v0.0.0-20180824235756-e3f48a95f98a/go.mod h1:ul4bvvnCOPZgq8w0nTkSmWVg/hauVpFS97Am1YM1XXo=
github.com/spacemonkeygo/spacelog v0.0.0-20180420211403-2296661a0572 h1:RC6RW7j+1+HkWaX/Yh71Ee5ZHaHYt7ZP4sQgUrm6cDU=
github.com/spacemonkeygo/spacelog v0.0.0-20180420211403-2296661a0572/go.mod h1:w0SWMsp6j9O/dk4/ZpIhL+3CkG8ofA2vuv7k+ltqUMc=
github.com/spacemonkeygo/tlshowdy v0.0.0-20160207005338-8fa2cec1d7cd h1:1DS6oRTNvEIlcFDVe4OU/LKlrkRB/wx85GHJthitXw0=
github.com/spacemonkeygo/tlshowdy v0.0.0-20160207005338-8fa2cec1d7cd/go.mod h1:MF7JYJoS2y353JlawNbpcLA0HAh4FzC4G+XrSIRP78c=
github.com/spaolacci/murmur3 v0.0.0-20180118202830-f09979ecbc72/go.mod h1:JwIasOWyU6f++ZhiEuf87xNszmSA2myDM2Kzu9HwQUA=
2018-10-06 18:57:53 +01:00
github.com/spf13/afero v1.1.2/go.mod h1:j4pytiNVoe2o6bmDsKpLACNPDBIoEAkihy7loJ1B0CQ=
github.com/spf13/afero v1.6.0 h1:xoax2sJ2DT8S8xA2paPFjDCScCNeWsg75VG0DLRreiY=
github.com/spf13/afero v1.6.0/go.mod h1:Ai8FlHk4v/PARR026UzYexafAt9roJ7LcLMAmO6Z93I=
github.com/spf13/cast v1.3.0/go.mod h1:Qx5cxh0v+4UWYiBimWS+eyWzqEqokIECu5etghLkUJE=
github.com/spf13/cast v1.3.1 h1:nFm6S0SMdyzrzcmThSipiEubIDy8WEXKNZ0UOgiRpng=
github.com/spf13/cast v1.3.1/go.mod h1:Qx5cxh0v+4UWYiBimWS+eyWzqEqokIECu5etghLkUJE=
github.com/spf13/cobra v1.1.3 h1:xghbfqPkxzxP3C/f3n5DdpAbdKLj4ZE4BWQI362l53M=
github.com/spf13/cobra v1.1.3/go.mod h1:pGADOWyqRD/YMrPZigI/zbliZ2wVD/23d+is3pSWzOo=
2018-10-06 18:57:53 +01:00
github.com/spf13/jwalterweatherman v1.0.0/go.mod h1:cQK4TGJAtQXfYWX+Ddv3mKDzgVb68N+wFjFa4jdeBTo=
github.com/spf13/jwalterweatherman v1.1.0 h1:ue6voC5bR5F8YxI5S67j9i582FU4Qvo2bmqnqMYADFk=
github.com/spf13/jwalterweatherman v1.1.0/go.mod h1:aNWZUN0dPAAO/Ljvb5BEdw96iTZ0EXowPYD95IqWIGo=
2018-10-06 18:57:53 +01:00
github.com/spf13/pflag v1.0.3/go.mod h1:DYY7MBk1bdzusC3SYhjObp+wFpr4gzcvqqNjLnInEg4=
github.com/spf13/pflag v1.0.5 h1:iy+VFUOCP1a+8yFto/drg2CJ5u0yRoB7fZw3DKv/JXA=
github.com/spf13/pflag v1.0.5/go.mod h1:McXfInJRrz4CZXVZOBLb0bTZqETkiAhM9Iw0y3An2Bg=
github.com/spf13/viper v1.7.0/go.mod h1:8WkrPz2fc9jxqZNCJI/76HCieCp4Q8HaLFoCha5qpdg=
github.com/spf13/viper v1.7.1 h1:pM5oEahlgWv/WnHXpgbKz7iLIxRf65tye2Ci+XFK5sk=
github.com/spf13/viper v1.7.1/go.mod h1:8WkrPz2fc9jxqZNCJI/76HCieCp4Q8HaLFoCha5qpdg=
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/objx v0.1.1/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/objx v0.2.0/go.mod h1:qt09Ya8vawLte6SNmTgCsAVtYtaKzEcn8ATUoHMkEqE=
github.com/stretchr/objx v0.4.0/go.mod h1:YvHI0jy2hoMjB+UWwv71VJQ9isScKT/TqJzVSSt89Yw=
github.com/stretchr/objx v0.5.0/go.mod h1:Yh+to48EsGEfYuaHDzXPcE3xhTkx73EhmCGUpEOglKo=
2018-10-06 18:57:53 +01:00
github.com/stretchr/testify v1.2.2/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs=
github.com/stretchr/testify v1.3.0/go.mod h1:M5WIy9Dh21IEIfnGCwXGc5bZfKNJtfHm1UVUgZn+9EI=
github.com/stretchr/testify v1.4.0/go.mod h1:j7eGeouHqKxXV5pUuKE4zz7dFj8WfuZ+81PSLYec5m4=
github.com/stretchr/testify v1.5.1/go.mod h1:5W2xD1RspED5o8YsWQXVCued0rvSQ+mT+I5cxcmMvtA=
github.com/stretchr/testify v1.6.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
github.com/stretchr/testify v1.7.0/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
github.com/stretchr/testify v1.7.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
github.com/stretchr/testify v1.8.0/go.mod h1:yNjHg4UonilssWZ8iaSj1OCr/vHnekPRkoO+kdMU+MU=
github.com/stretchr/testify v1.8.2 h1:+h33VjcLVPDHtOdpUCuF+7gSuG3yGIftsP1YvFihtJ8=
github.com/stretchr/testify v1.8.2/go.mod h1:w2LPCIKwWwSfY2zedu0+kehJoqGctiVI29o6fzry7u4=
github.com/stripe/stripe-go/v72 v72.90.0 h1:fvJ/aL1rHHWRj5buuayb/2ufJued1UR1HEVavsoZoFs=
github.com/stripe/stripe-go/v72 v72.90.0/go.mod h1:QwqJQtduHubZht9mek5sds9CtQcKFdsykV9ZepRWwo0=
github.com/subosito/gotenv v1.2.0 h1:Slr1R9HxAlEKefgq5jn9U+DnETlIUa6HfgEzj0g5d7s=
github.com/subosito/gotenv v1.2.0/go.mod h1:N0PQaV/YGNqwC0u51sEeR/aUtSLEXKX9iv69rRypqCw=
github.com/tarm/serial v0.0.0-20180830185346-98f6abe2eb07/go.mod h1:kDXzergiv9cbyO7IOYJZWg1U88JhDg3PB6klq9Hg2pA=
github.com/tidwall/btree v0.0.0-20191029221954-400434d76274 h1:G6Z6HvJuPjG6XfNGi/feOATzeJrfgTNJY+rGrHbA04E=
github.com/tidwall/btree v0.0.0-20191029221954-400434d76274/go.mod h1:huei1BkDWJ3/sLXmO+bsCNELL+Bp2Kks9OLyQFkzvA8=
github.com/tidwall/buntdb v1.1.2 h1:noCrqQXL9EKMtcdwJcmuVKSEjqu1ua99RHHgbLTEHRo=
github.com/tidwall/buntdb v1.1.2/go.mod h1:xAzi36Hir4FarpSHyfuZ6JzPJdjRZ8QlLZSntE2mqlI=
github.com/tidwall/gjson v1.3.4/go.mod h1:P256ACg0Mn+j1RXIDXoss50DeIABTYK1PULOJHhxOls=
github.com/tidwall/gjson v1.6.0 h1:9VEQWz6LLMUsUl6PueE49ir4Ka6CzLymOAZDxpFsTDc=
github.com/tidwall/gjson v1.6.0/go.mod h1:P256ACg0Mn+j1RXIDXoss50DeIABTYK1PULOJHhxOls=
github.com/tidwall/grect v0.0.0-20161006141115-ba9a043346eb h1:5NSYaAdrnblKByzd7XByQEJVT8+9v0W/tIY0Oo4OwrE=
github.com/tidwall/grect v0.0.0-20161006141115-ba9a043346eb/go.mod h1:lKYYLFIr9OIgdgrtgkZ9zgRxRdvPYsExnYBsEAd8W5M=
github.com/tidwall/match v1.0.1 h1:PnKP62LPNxHKTwvHHZZzdOAOCtsJTjo6dZLCwpKm5xc=
github.com/tidwall/match v1.0.1/go.mod h1:LujAq0jyVjBy028G1WhWfIzbpQfMO8bBZ6Tyb0+pL9E=
github.com/tidwall/pretty v1.0.0/go.mod h1:XNkn88O1ChpSDQmQeStsy+sBenx6DDtFZJxhVysOjyk=
github.com/tidwall/pretty v1.0.1 h1:WE4RBSZ1x6McVVC8S/Md+Qse8YUv6HRObAx6ke00NY8=
github.com/tidwall/pretty v1.0.1/go.mod h1:XNkn88O1ChpSDQmQeStsy+sBenx6DDtFZJxhVysOjyk=
github.com/tidwall/rtree v0.0.0-20180113144539-6cd427091e0e h1:+NL1GDIUOKxVfbp2KoJQD9cTQ6dyP2co9q4yzmT9FZo=
github.com/tidwall/rtree v0.0.0-20180113144539-6cd427091e0e/go.mod h1:/h+UnNGt0IhNNJLkGikcdcJqm66zGD/uJGMRxK/9+Ao=
github.com/tidwall/tinyqueue v0.0.0-20180302190814-1e39f5511563 h1:Otn9S136ELckZ3KKDyCkxapfufrqDqwmGjcHfAyXRrE=
github.com/tidwall/tinyqueue v0.0.0-20180302190814-1e39f5511563/go.mod h1:mLqSmt7Dv/CNneF2wfcChfN1rvapyQr01LGKnKex0DQ=
github.com/tmc/grpc-websocket-proxy v0.0.0-20190109142713-0ad062ec5ee5/go.mod h1:ncp9v5uamzpCO7NfCPTXjqaC+bZgJeR0sMTm6dMHP7U=
github.com/valyala/bytebufferpool v1.0.0 h1:GqA5TC/0021Y/b9FG4Oi9Mr3q7XYx6KllzawFIhcdPw=
github.com/valyala/bytebufferpool v1.0.0/go.mod h1:6bBcMArwyJ5K/AmCkWv1jt77kVWyCJ6HpOuEn7z0Csc=
github.com/valyala/fasthttp v1.14.0 h1:67bfuW9azCMwW/Jlq/C+VeihNpAuJMWkYPBig1gdi3A=
github.com/valyala/fasthttp v1.14.0/go.mod h1:ol1PCaL0dX20wC0htZ7sYCsvCYmrouYra0zHzaclZhE=
github.com/valyala/tcplisten v0.0.0-20161114210144-ceec8f93295a/go.mod h1:v3UYOV9WzVtRmSR+PDvWpU/qWl4Wa5LApYYX4ZtKbio=
github.com/vbauerster/mpb/v8 v8.4.0 h1:Jq2iNA7T6SydpMVOwaT+2OBWlXS9Th8KEvBqeu5eeTo=
github.com/vbauerster/mpb/v8 v8.4.0/go.mod h1:vjp3hSTuCtR+x98/+2vW3eZ8XzxvGoP8CPseHMhiPyc=
github.com/viant/assertly v0.4.8/go.mod h1:aGifi++jvCrUaklKEKT0BU95igDNaqkvz+49uaYMPRU=
github.com/viant/toolbox v0.24.0/go.mod h1:OxMCG57V0PXuIP2HNQrtJf2CjqdmbrOx5EkMILuUhzM=
github.com/vivint/infectious v0.0.0-20200605153912-25a574ae18a3 h1:zMsHhfK9+Wdl1F7sIKLyx3wrOFofpb3rWFbA4HgcK5k=
github.com/vivint/infectious v0.0.0-20200605153912-25a574ae18a3/go.mod h1:R0Gbuw7ElaGSLOZUSwBm/GgVwMd30jWxBDdAyMOeTuc=
github.com/xeipuuv/gojsonpointer v0.0.0-20180127040702-4e3ac2762d5f h1:J9EGpcZtP0E/raorCMxlFGSTBrsSlaDGf3jU/qvAE2c=
github.com/xeipuuv/gojsonpointer v0.0.0-20180127040702-4e3ac2762d5f/go.mod h1:N2zxlSyiKSe5eX1tZViRH5QA0qijqEDrYZiPEAiq3wU=
github.com/xeipuuv/gojsonreference v0.0.0-20180127040603-bd5ef7bd5415 h1:EzJWgHovont7NscjpAxXsDA8S8BMYve8Y5+7cuRE7R0=
github.com/xeipuuv/gojsonreference v0.0.0-20180127040603-bd5ef7bd5415/go.mod h1:GwrjFmJcFw6At/Gs6z4yjiIwzuJ1/+UwLxMQDVQXShQ=
github.com/xeipuuv/gojsonschema v1.2.0 h1:LhYJRs+L4fBtjZUfuSZIKGeVu0QRy8e5Xi7D17UxZ74=
github.com/xeipuuv/gojsonschema v1.2.0/go.mod h1:anYRn/JVcOK2ZgGU+IjEV4nwlhoK5sQluxsYJ78Id3Y=
github.com/xiang90/probing v0.0.0-20190116061207-43a291ad63a2/go.mod h1:UETIi67q53MR2AWcXfiuqkDkRtnGDLqkBTpCHuJHxtU=
github.com/xtgo/uuid v0.0.0-20140804021211-a0b114877d4c h1:3lbZUMbMiGUW/LMkfsEABsc5zNT9+b1CvsJx47JzJ8g=
github.com/xtgo/uuid v0.0.0-20140804021211-a0b114877d4c/go.mod h1:UrdRz5enIKZ63MEE3IF9l2/ebyx59GyGgPi+tICQdmM=
github.com/yalp/jsonpath v0.0.0-20180802001716-5cc68e5049a0 h1:6fRhSjgLCkTD3JnJxvaJ4Sj+TYblw757bqYgZaOq5ZY=
github.com/yalp/jsonpath v0.0.0-20180802001716-5cc68e5049a0/go.mod h1:/LWChgwKmvncFJFHJ7Gvn9wZArjbV5/FppcK2fKk/tI=
github.com/yudai/gojsondiff v1.0.0 h1:27cbfqXLVEJ1o8I6v3y9lg8Ydm53EKqHXAOMxEGlCOA=
github.com/yudai/gojsondiff v1.0.0/go.mod h1:AY32+k2cwILAkW1fbgxQ5mUmMiZFgLIV+FBNExI05xg=
github.com/yudai/golcs v0.0.0-20170316035057-ecda9a501e82 h1:BHyfKlQyqbsFN5p3IfnEUduWvb9is428/nNb5L3U01M=
github.com/yudai/golcs v0.0.0-20170316035057-ecda9a501e82/go.mod h1:lgjkn3NuSvDfVJdfcVVdX+jpBxNmX4rDAzaS45IcYoM=
github.com/yudai/pp v2.0.1+incompatible/go.mod h1:PuxR/8QJ7cyCkFp/aUDS+JY727OFEZkTdatxwunjIkc=
github.com/yuin/goldmark v1.1.27/go.mod h1:3hX8gzYuyVAZsxl0MRgGTJEmQBFcNTphYh9decYSb74=
github.com/yuin/goldmark v1.2.1/go.mod h1:3hX8gzYuyVAZsxl0MRgGTJEmQBFcNTphYh9decYSb74=
github.com/yuin/goldmark v1.3.5/go.mod h1:mwnBkeHKe2W/ZEtQ+71ViKU8L12m81fl3OWwC1Zlc8k=
github.com/yuin/goldmark v1.4.1/go.mod h1:mwnBkeHKe2W/ZEtQ+71ViKU8L12m81fl3OWwC1Zlc8k=
github.com/yuin/gopher-lua v0.0.0-20191220021717-ab39c6098bdb h1:ZkM6LRnq40pR1Ox0hTHlnpkcOTuFIDQpZ1IN8rKKhX0=
github.com/yuin/gopher-lua v0.0.0-20191220021717-ab39c6098bdb/go.mod h1:gqRgreBUhTSL0GeU64rtZ3Uq3wtjOa/TB2YfrtkCbVQ=
github.com/zeebo/admission/v3 v3.0.3 h1:mwP/Y9EE8zRXOK8ma7CpEJfpiaKv4D4JWIOU4E8FPOw=
github.com/zeebo/admission/v3 v3.0.3/go.mod h1:2OWyAS5yo0Xvj2AEUosOjTUHxaY0oIIiCrXGKCYzWpo=
github.com/zeebo/assert v0.0.0-20181109011804-10f827ce2ed6/go.mod h1:yssERNPivllc1yU3BvpjYI5BUW+zglcz6QWqeVRL5t0=
github.com/zeebo/assert v1.1.0/go.mod h1:Pq9JiuJQpG8JLJdtkwrJESF0Foym2/D9XMU5ciN/wJ0=
github.com/zeebo/assert v1.3.0/go.mod h1:Pq9JiuJQpG8JLJdtkwrJESF0Foym2/D9XMU5ciN/wJ0=
github.com/zeebo/assert v1.3.1 h1:vukIABvugfNMZMQO1ABsyQDJDTVQbn+LWSMy1ol1h6A=
github.com/zeebo/assert v1.3.1/go.mod h1:Pq9JiuJQpG8JLJdtkwrJESF0Foym2/D9XMU5ciN/wJ0=
github.com/zeebo/blake3 v0.2.3 h1:TFoLXsjeXqRNFxSbk35Dk4YtszE/MQQGK10BH4ptoTg=
github.com/zeebo/blake3 v0.2.3/go.mod h1:mjJjZpnsyIVtVgTOSpJ9vmRE4wgDeyt2HU3qXvvKCaQ=
github.com/zeebo/clingy v0.0.0-20230301225531-f2d4117c8e8c h1:bE9vXPFKa9wkCCq1HJi2Ms4pWuBoIKQEMe6CZzu/TKE=
github.com/zeebo/clingy v0.0.0-20230301225531-f2d4117c8e8c/go.mod h1:MHEhXvEfewflU7SSVKHI7nkdU+fpyxZ5XPPzj+5gYNw=
github.com/zeebo/errs v1.1.1/go.mod h1:Yj8dHrUQwls1bF3dr/vcSIu+qf4mI7idnTcHfoACc6I=
github.com/zeebo/errs v1.2.2/go.mod h1:sgbWHsvVuTPHcqJJGQ1WhI5KbWlHYz+2+2C/LSEtCw4=
github.com/zeebo/errs v1.3.0 h1:hmiaKqgYZzcVgRL1Vkc1Mn2914BbzB0IBxs+ebeutGs=
github.com/zeebo/errs v1.3.0/go.mod h1:sgbWHsvVuTPHcqJJGQ1WhI5KbWlHYz+2+2C/LSEtCw4=
github.com/zeebo/errs/v2 v2.0.3 h1:WwqAmopgot4ZC+CgIveP+H91Nf78NDEGWjtAXen45Hw=
github.com/zeebo/errs/v2 v2.0.3/go.mod h1:OKmvVZt4UqpyJrYFykDKm168ZquJ55pbbIVUICNmLN0=
2018-10-06 18:57:53 +01:00
github.com/zeebo/float16 v0.1.0 h1:kRqxv5og6z1emEyz5FpW0/BVHe5VfxEAw6b1ljCZlUc=
github.com/zeebo/float16 v0.1.0/go.mod h1:fssGvvXu+XS8MH57cKmyrLB/cqioYeYX/2mXCN3a5wo=
github.com/zeebo/incenc v0.0.0-20180505221441-0d92902eec54 h1:+cwNE5KJ3pika4HuzmDHkDlK5myo0G9Sv+eO7WWxnUQ=
github.com/zeebo/incenc v0.0.0-20180505221441-0d92902eec54/go.mod h1:EI8LcOBDlSL3POyqwC1eJhOYlMBMidES+613EtmmT5w=
github.com/zeebo/ini v0.0.0-20210514163846-cc8fbd8d9599 h1:aYOFLPl7mY7PFFuLuYoBqlP46yJ7rZONGlXMS4/6QpA=
github.com/zeebo/ini v0.0.0-20210514163846-cc8fbd8d9599/go.mod h1:oiTrvEJ3c6v+Kpfz1tun0BO+EuR3eKdH4tF+WvEbjw8=
github.com/zeebo/mwc v0.0.4 h1:9dNXNLtUB4lUXoXgyhy3YrKoV0OD7oRiu907YMS0nl0=
github.com/zeebo/mwc v0.0.4/go.mod h1:qNHfgp/ZCpQNcJHwKcO5EP3VgaBrW6DPohsK4QfyxxE=
github.com/zeebo/pcg v1.0.1 h1:lyqfGeWiv4ahac6ttHs+I5hwtH/+1mrhlCtVNQM2kHo=
github.com/zeebo/pcg v1.0.1/go.mod h1:09F0S9iiKrwn9rlI5yjLkmrug154/YRW6KnnXVDM/l4=
lib/uplink: encryption context (#2349) * lib/uplink: encryption context Change-Id: I5c23dca3286a46b713b30c4997e9ae6e630b2280 * lib/uplink: bucket operation examples Change-Id: Ia0f6e69f365dcff0cf11c731f51b30842bce053b * lib/uplink: encryption key sharing test cases Change-Id: I3a172d565f33f4e591402cdcb9460664a7cc7fbe * fix encrypted path prefix restriction issue Change-Id: I8f3921f9d52aaf4b84039de608b8cbbc88769554 * implement panics in libuplink encryption code todo on cipher suite selection as well as an api concern Change-Id: Ifa39eb3cc4b3443f7d96f9304df9b2ac4ec4085d * implement GetProjectInfo api call to get salt Change-Id: Ic5f6b3be9ea35df48c1aa214ab5d355fb328e2cf * some fixes and accessors for encryption store Change-Id: I3bb61f6712a037900e2a96e72ad4029ec1d3f718 * general fixes to builds/tests/etc Change-Id: I9930fa96acb3b221d9a001f8e274af5729cc8a47 * java bindings changes Change-Id: Ia2bd4c9c69739c8d3154d79616cff1f36fb403b6 * get libuplink examples passing Change-Id: I828f09a144160e0a5dd932324f78491ae2ec8a07 * fix proto.lock file Change-Id: I2fbbf4d0976a7d0473c2645e6dcb21aaa3be7651 * fix proto.lock again Change-Id: I92702cf49e1a340eef6379c2be4f7c4a268112a9 * fix golint issues Change-Id: I631ff9f43307a58e3b25a58cbb4a4cc2495f5eb6 * more linting fixes Change-Id: I51f8f30b367b5bca14c94b15417b9a4c9e7aa0ce * bug fixed by structs bump Change-Id: Ibb03c691fce7606c35c08721b3ef0781ab48a38a * retrigger Change-Id: Ieee0470b6a2d07168a1578552e8e7f271ae93a13 * retrigger Change-Id: I753d63853171e6a436c104ce176048892eb974c5 * semantic merge conflict Change-Id: I9419448496de90340569047a6a16a1b858a7978a * update total to match prod defaults Change-Id: I693d55c1ebb28b5803ee1d26e9e198decf82308b * retrigger Change-Id: I28b74d5d6202f61aa3866fe407d423f6a0a14b9e * retrigger Change-Id: I6fd054885c715f602e2cef623fd464c42e88742c * retrigger Change-Id: I6a01bae88c72406d4ed5a8f13bf8a2b3c650bd2d
2019-06-27 18:36:51 +01:00
github.com/zeebo/structs v1.0.2 h1:kvcd7s2LqXuO9cdV5LqrGHCOAfCBXaZpKCA3jD9SJIc=
github.com/zeebo/structs v1.0.2/go.mod h1:LphfpprlqJQcbCq+eA3iIK/NsejMwk9mlfH/tM1XuKQ=
github.com/zenazn/goji v0.9.0/go.mod h1:7S9M489iMyHBNxwZnk9/EHS098H4/F6TATF2mIxtB1Q=
github.com/zyedidia/generic v1.2.1 h1:Zv5KS/N2m0XZZiuLS82qheRG4X1o5gsWreGb0hR7XDc=
github.com/zyedidia/generic v1.2.1/go.mod h1:ly2RBz4mnz1yeuVbQA/VFwGjK3mnHGRj1JuoG336Bis=
go.etcd.io/bbolt v1.3.2/go.mod h1:IbVyRI1SCnLcuJnV2u8VeU0CEYM7e686BmAb1XKL+uU=
go.etcd.io/bbolt v1.3.5 h1:XAzx9gjCb0Rxj7EoqcClPD1d5ZBxZJk0jbuoPHenBt0=
go.etcd.io/bbolt v1.3.5/go.mod h1:G5EMThwa9y8QZGBClrRx5EY+Yw9kAhnjy3bSjsnlVTQ=
go.opencensus.io v0.18.0/go.mod h1:vKdFvxhtzZ9onBp9VKHK8z/sRpBMnKAsufL7wlDrCOA=
go.opencensus.io v0.21.0/go.mod h1:mSImk1erAIZhrmZN+AvHh14ztQfjbGwt4TtuofqLduU=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
go.opencensus.io v0.22.0/go.mod h1:+kGneAE2xo2IficOXnaByMWTGM9T73dGwxeWcUqIpI8=
go.opencensus.io v0.22.2 h1:75k/FF0Q2YM8QYo07VPddOLBslDt1MZOdEslOHvmzAs=
go.opencensus.io v0.22.2/go.mod h1:yxeiOL68Rb0Xd1ddK5vPZ/oVn4vY4Ynel7k9FzqtOIw=
go.uber.org/atomic v1.3.2/go.mod h1:gD2HeocX3+yG+ygLZcrzQJaqmWj9AIm7n08wl/qW/PE=
go.uber.org/atomic v1.4.0/go.mod h1:gD2HeocX3+yG+ygLZcrzQJaqmWj9AIm7n08wl/qW/PE=
go.uber.org/atomic v1.5.0/go.mod h1:sABNBOSYdrvTF6hTgEIbc7YasKWGhgEQZyfxyTvoXHQ=
go.uber.org/atomic v1.6.0/go.mod h1:sABNBOSYdrvTF6hTgEIbc7YasKWGhgEQZyfxyTvoXHQ=
go.uber.org/atomic v1.7.0 h1:ADUqmZGgLDDfbSL9ZmPxKTybcoEYHgpYfELNoN+7hsw=
go.uber.org/atomic v1.7.0/go.mod h1:fEN4uk6kAWBTFdckzkM89CLk9XfWZrxpCo0nPH17wJc=
2018-10-06 18:57:53 +01:00
go.uber.org/multierr v1.1.0/go.mod h1:wR5kodmAFQ0UK8QlbwjlSNy0Z68gJhDJUG5sjR94q/0=
go.uber.org/multierr v1.3.0/go.mod h1:VgVr7evmIr6uPjLBxg28wmKNXyqE9akIJ5XnfpiKl+4=
go.uber.org/multierr v1.5.0/go.mod h1:FeouvMocqHpRaaGuG9EjoKcStLC43Zu/fmqdUMPcKYU=
go.uber.org/multierr v1.6.0 h1:y6IPFStTAIT5Ytl7/XYmHvzXQ7S3g/IeZW9hyZ5thw4=
go.uber.org/multierr v1.6.0/go.mod h1:cdWPpRnG4AhwMwsgIHip0KRBQjJy5kYEpYjJxpXp9iU=
go.uber.org/tools v0.0.0-20190618225709-2cfd321de3ee/go.mod h1:vJERXedbb3MVM5f9Ejo0C68/HhF8uaILCdgjnY+goOA=
go.uber.org/zap v1.9.1/go.mod h1:vwi/ZaCAaUcBkycHslxD9B2zi4UTXhF60s6SWpuDF0Q=
go.uber.org/zap v1.10.0/go.mod h1:vwi/ZaCAaUcBkycHslxD9B2zi4UTXhF60s6SWpuDF0Q=
go.uber.org/zap v1.13.0/go.mod h1:zwrFLgMcdUuIBviXEYEH1YKNaOBnKXsx2IPda5bBwHM=
go.uber.org/zap v1.14.1/go.mod h1:Mb2vm2krFEG5DV0W9qcHBYFtp/Wku1cvYaqPsS/WYfc=
go.uber.org/zap v1.16.0 h1:uFRZXykJGK9lLY4HtgSw44DnIcAM+kRBP7x5m+NpAOM=
go.uber.org/zap v1.16.0/go.mod h1:MA8QOfq0BHJwdXa996Y4dYkAqRKB8/1K1QMMZVaNZjQ=
go4.org v0.0.0-20180809161055-417644f6feb5/go.mod h1:MkTOUMDaeVYJUOUsaDXIhWPZYa1yOyC1qaOBpL57BhE=
golang.org/x/build v0.0.0-20190111050920-041ab4dc3f9d/go.mod h1:OWs+y06UdEOHN4y+MfF/py+xQ/tYqIWW03b70/CG9Rw=
golang.org/x/crypto v0.0.0-20180904163835-0709b304e793/go.mod h1:6SG95UA2DQfeDnfUPMdvaQW0Q7yPrPDi9nlGo2tz2b4=
golang.org/x/crypto v0.0.0-20181029021203-45a5f77698d3/go.mod h1:6SG95UA2DQfeDnfUPMdvaQW0Q7yPrPDi9nlGo2tz2b4=
golang.org/x/crypto v0.0.0-20181030102418-4d3f4d9ffa16/go.mod h1:6SG95UA2DQfeDnfUPMdvaQW0Q7yPrPDi9nlGo2tz2b4=
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
golang.org/x/crypto v0.0.0-20190313024323-a1f597ede03a/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
golang.org/x/crypto v0.0.0-20190411191339-88737f569e3a/go.mod h1:WFFai1msRO1wXaEeE5yQxYXgSfI8pQAWXbQop6sCtWE=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20190605123033-f99c8df09eb5/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20190820162420-60c769a6c586/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20200221231518-2aa609cf4a9d/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.0.0-20201203163018-be400aefbc4c/go.mod h1:jdWPYTVW3xRLrWPugEBEK3UY2ZEsg3UU495nc5E+M+I=
golang.org/x/crypto v0.0.0-20210322153248-0c34fe9e7dc2/go.mod h1:T9bdIzuCu7OtxOm1hfPfRQxPLYneinmdGuTeoZ9dtd4=
golang.org/x/crypto v0.0.0-20210616213533-5ff15b29337e/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
golang.org/x/crypto v0.0.0-20210711020723-a769d52b0f97/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
golang.org/x/crypto v0.0.0-20210921155107-089bfa567519/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
golang.org/x/crypto v0.0.0-20220525230936-793ad666bf5e/go.mod h1:IxCIyHEi3zRg3s0A5j5BB6A9Jmi73HwBIUl50j+osU4=
golang.org/x/crypto v0.6.0 h1:qfktjS5LUO+fFKeJXZ+ikTRijMmljikvG68fpMMruSc=
golang.org/x/crypto v0.6.0/go.mod h1:OFC/31mSvZgRz0V1QTNCzfAI1aIRzbiufJtkMIlEp58=
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190510132918-efd6b22b2522/go.mod h1:ZjyILWgesfNpC6sMxTJOJm9Kp84zZh5NQWvqDGG3Qr8=
golang.org/x/exp v0.0.0-20190829153037-c13cbed26979/go.mod h1:86+5VVa7VpoJ4kLfm080zCjGlMRFzhUhsZKEZO7MGek=
golang.org/x/exp v0.0.0-20191030013958-a1ab85dbe136/go.mod h1:JXzH8nQsPlswgeRAPE3MuO9GYsAcnJvJ4vnMwN/5qkY=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/exp v0.0.0-20191227195350-da58074b4299/go.mod h1:2RIsYlXP63K8oxa1u096TMicItID8zy7Y6sNkU49FU4=
golang.org/x/exp v0.0.0-20221205204356-47842c84f3db h1:D/cFflL63o2KSLJIwjlcIt8PR064j/xsmdEJL/YvY/o=
golang.org/x/exp v0.0.0-20221205204356-47842c84f3db/go.mod h1:CxIveKay+FTh1D0yPZemJVgC/95VzuuOLq5Qi4xnoYc=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
golang.org/x/image v0.0.0-20190802002840-cff245a6509b/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
golang.org/x/lint v0.0.0-20180702182130-06c8688daad7/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
golang.org/x/lint v0.0.0-20181026193005-c67002cb31c3/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
golang.org/x/lint v0.0.0-20190227174305-5b3e6a55c961/go.mod h1:wehouNa3lNwaWXcvxsM5YxQ5yQlVC4a0KAMCusXpPoU=
golang.org/x/lint v0.0.0-20190301231843-5614ed5bae6f/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
golang.org/x/lint v0.0.0-20190313153728-d0100b6bd8b3/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/lint v0.0.0-20190409202823-959b441ac422/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc=
golang.org/x/lint v0.0.0-20190909230951-414d861bb4ac/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc=
golang.org/x/lint v0.0.0-20190930215403-16217165b5de/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/lint v0.0.0-20191125180803-fdd1cda4f05f/go.mod h1:5qLYkcX4OjUUV8bRuDixDT3tpyyb+LUpUlRWLxfhWrs=
golang.org/x/lint v0.0.0-20200302205851-738671d3881b h1:Wh+f8QHJXR411sJR8/vRBTZ7YapZaRvUcLFFJhusH0k=
golang.org/x/lint v0.0.0-20200302205851-738671d3881b/go.mod h1:3xt1FjdF8hUf6vQPIChWIBhFzV8gjjsPE/fR3IyQdNY=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/mobile v0.0.0-20190312151609-d3739f865fa6/go.mod h1:z+o9i4GpDbdi3rU15maQ/Ox0txvL9dWGYEHz965HBQE=
golang.org/x/mobile v0.0.0-20190719004257-d2bd2a29d028/go.mod h1:E/iHnbuqvinMTCcRqshq8CkpyQDoeVncDDYHnLhea+o=
golang.org/x/mod v0.0.0-20190513183733-4bf6d317e70e/go.mod h1:mXi4GBBbnImb6dmsKGUJ2LatrhH/nqhxcFungHvyanc=
golang.org/x/mod v0.1.0/go.mod h1:0QHyrYULN0/3qlju5TqG8bIK38QM8yzMo5ekMj3DlcY=
golang.org/x/mod v0.1.1-0.20191105210325-c90efee705ee/go.mod h1:QqPTAvyqsEbceGzBzNggFXnrqF1CaUcvgkdR5Ot7KZg=
golang.org/x/mod v0.2.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.3.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.4.2/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.6.0-dev.0.20220106191415-9b9b3d81d5e3/go.mod h1:3p9vT2HGsQu2K1YbXdKPJLVgG5VJdoTa1poYQBtP1AY=
golang.org/x/mod v0.6.0-dev.0.20220419223038-86c51ed26bb4/go.mod h1:jJ57K6gSWd91VN4djpZkiMVwK6gcyfeH4XE8wZrZaV4=
golang.org/x/mod v0.6.0 h1:b9gGHsz9/HhJ3HF5DHQytPpuwocVTChQJK3AvoLRD5I=
golang.org/x/mod v0.6.0/go.mod h1:4mET923SAdbXp2ki8ey+zGs1SLqsuM2Y0uvdZR/fUNI=
golang.org/x/net v0.0.0-20180724234803-3673e40ba225/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20180826012351-8a410e7b638d/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
2018-10-06 18:57:53 +01:00
golang.org/x/net v0.0.0-20180906233101-161cd47e91fd/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20181023162649-9b4f9f5ad519/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20181029044818-c44066c5c816/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20181106065722-10aee1819953/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20181114220301-adae6a3d119a/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20181201002055-351d144fa1fc/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20181220203305-927f97764cc3/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20190108225652-1e06a53dbb7e/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20190213061140-3a22650c66bd/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20190311183353-d8887717615a/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
golang.org/x/net v0.0.0-20190313220215-9f648a60d977/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/net v0.0.0-20190501004415-9ce7a6920f09/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
golang.org/x/net v0.0.0-20190503192946-f4e77d36d62c/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
golang.org/x/net v0.0.0-20190603091049-60506f45cf65/go.mod h1:HSz+uSET+XFnRR8LxR5pz3Of3rY3CfYBVs4xY44aLks=
golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
golang.org/x/net v0.0.0-20190813141303-74dc4d7220e7/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
golang.org/x/net v0.0.0-20190923162816-aa69164e4478/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/net v0.0.0-20200114155413-6afb5195e5aa/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
golang.org/x/net v0.0.0-20200226121028-0de0cce0169b/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
golang.org/x/net v0.0.0-20200324143707-d3edc9973b7e/go.mod h1:qpuaurCH72eLCgpAm/N6yyVIVM9cpaDIP3A8BGJEC5A=
golang.org/x/net v0.0.0-20200520004742-59133d7f0dd7/go.mod h1:qpuaurCH72eLCgpAm/N6yyVIVM9cpaDIP3A8BGJEC5A=
golang.org/x/net v0.0.0-20200625001655-4c5254603344/go.mod h1:/O7V0waA8r7cgGh81Ro3o1hOxt32SMVPicZroKQ2sZA=
golang.org/x/net v0.0.0-20200707034311-ab3426394381/go.mod h1:/O7V0waA8r7cgGh81Ro3o1hOxt32SMVPicZroKQ2sZA=
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
golang.org/x/net v0.0.0-20210226172049-e18ecbb05110/go.mod h1:m0MpNAwzfU5UDzcl9v0D8zg8gWTRqZa9RBIspLL5mdg=
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
golang.org/x/net v0.0.0-20210428140749-89ef3d95e781/go.mod h1:OJAsFXCWl8Ukc7SiCT/9KSuxbyM7479/AVlXFRxuMCk=
golang.org/x/net v0.0.0-20211015210444-4f30a5c0130f/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.0.0-20211112202133-69e39bad7dc2/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.0.0-20220526153639-5463443f8c37/go.mod h1:XRhObCWvk6IyKnWLug+ECip1KBveYUHfp+8e9klMJ9c=
golang.org/x/net v0.6.0 h1:L4ZwwTvKW9gr0ZMS1yrHD9GZhIuVjOBBnaKH+SPQK0Q=
golang.org/x/net v0.6.0/go.mod h1:2Tu9+aMcznHK/AK1HMvgo6xiTLG5rD5rZLDS+rp2Bjs=
2018-10-06 18:57:53 +01:00
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
golang.org/x/oauth2 v0.0.0-20181017192945-9dcd33a902f4/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
golang.org/x/oauth2 v0.0.0-20181203162652-d668ce993890/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
golang.org/x/oauth2 v0.0.0-20190226205417-e64efc72b421/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/oauth2 v0.0.0-20190604053449-0f29369cfe45/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d h1:TzXSXBo42m9gQenoE3b9BGiEpg5IG2JkU5FkPIawgtw=
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
golang.org/x/perf v0.0.0-20180704124530-6e6d33e29852/go.mod h1:JLpeXjPJfIyPr5TlbXLkXWLhP8nz10XfvxElABhCtcw=
2018-10-06 18:57:53 +01:00
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20181108010431-42b317875d0f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20181221193216-37e7f081c4d4/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20190227155943-e225da77a7e6/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20220819030929-7fc1605a5dde/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.1.0 h1:wsuoTGHzEhffawBOhz5CYhcrV4IdKZbEyZjBMuTp12o=
golang.org/x/sync v0.1.0/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sys v0.0.0-20180823144017-11551d06cbcc/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20180905080454-ebe1bf3edb33/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
2018-10-06 18:57:53 +01:00
golang.org/x/sys v0.0.0-20180909124046-d0be0721c37e/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20181026203630-95b1ffbd15a5/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20181029174526-d69651ed3497/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20181107165924-66b7b1311ac8/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20181116152217-5ac8a444bdc5/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190204203706-41f3e6584952/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190222072716-a9d3bda3a223/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190316082340-a2f829d7f35f/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190403152447-81d4e9dc473e/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190422165155-953cdadca894/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/sys v0.0.0-20190502145724-3ef323f4f1fd/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190507160741-ecd444e8653b/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190606165138-5da285871e9c/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190624142023-c5567b49c5d0/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190813064441-fde4db37ae7a/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190904154756-749cb33beabd/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20191005200804-aed5e4c7ecf9/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20191026070338-33540a1f6037/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20191120155948-bd437916bb0e/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/sys v0.0.0-20191204072324-ce4227a45e2e/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20191224085550-c709ea063b76/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/sys v0.0.0-20200113162924-86b910548bc1/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200116001909-b77594299b42/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200202164722-d101bd2416d5/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200223170610-d5e6a3e2c0ae/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200323222414-85ca7c5b95cd/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200519105757-fe76b779f299/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200625212154-ddb9806d33ae/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200930185726-fdedc70b468f/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210112080510-489259a85091/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210330210617-4fbd30eecc44/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210423082822-04245dca01da/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210510120138-977fb7262007/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20210514084401-e8d321eab015/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20210615035016-665e8c7367d1/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20211007075335-d3039528d8ac/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20211019181941-9d821ace8654/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220412211240-33da011f77ad/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220520151302-bc2c85ada10a/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.7.0 h1:3jlCCIQZPdOYu1h8BkNvLz8Kgwtae2cagcG/VamtZRU=
golang.org/x/sys v0.7.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/term v0.0.0-20201117132131-f5c789dd3221/go.mod h1:Nr5EML6q2oocZ2LXRh80K7BxOlk5/8JxuGnuhpl+muw=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211/go.mod h1:jbD1KX2456YbFQfuXm/mYQcufACuNUgVhRMnK/tPxf8=
golang.org/x/term v0.5.0 h1:n2a8QNdAb0sZNpU9R1ALUXBbY+w51fCQDN+7EdxNBsY=
golang.org/x/term v0.5.0/go.mod h1:jMB1sMXY+tzblOD4FWmEbocvup2/aLOaQEp7JmGp78k=
2018-10-06 18:57:53 +01:00
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.1-0.20180807135948-17ff2d5776d2/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.2/go.mod h1:bEr9sfX3Q8Zfm5fL9x+3itogRgK3+ptLWKqgva+5dAk=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.4/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.7/go.mod h1:u+2+/6zg+i71rQMx5EYifcz6MCKuco9NR6JIITiCfzQ=
golang.org/x/text v0.7.0 h1:4BRB4x83lYWy72KwLD/qYDuTu7q9PjSagHvijDw7cLo=
golang.org/x/text v0.7.0/go.mod h1:mrYo+phRRbMaCq/xk9113O4dZlRixOauAjOtrjsXDZ8=
golang.org/x/time v0.0.0-20180412165947-fbb02b2291d2/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ=
golang.org/x/time v0.0.0-20181108054448-85acf8d2951c/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ=
golang.org/x/time v0.0.0-20190308202827-9d24e82272b4/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ=
golang.org/x/time v0.0.0-20200630173020-3af7569d3a1e h1:EHBhcS0mlXEAVwNyO2dLfjToGsyY4j24pTs2ScHnX7s=
golang.org/x/time v0.0.0-20200630173020-3af7569d3a1e/go.mod h1:tRJNPiyCQ0inRvYxbN9jk5I+vvW/OXSQhTDSoE431IQ=
golang.org/x/tools v0.0.0-20180221164845-07fd8470d635/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20180828015842-6cd1fcedba52/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20181030000716-a0a13e073c7b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20190226205152-f727befe758c/go.mod h1:9Yl7xja0Znq3iFh3HoIrodX9oNMXvdceNzlUR8zjMvY=
golang.org/x/tools v0.0.0-20190311212946-11955173bddd/go.mod h1:LCzVGOaR6xXOjkQ3onu1FJEFr0SW1gC7cKk1uF8kGRs=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/tools v0.0.0-20190312151545-0bb0c0a6e846/go.mod h1:LCzVGOaR6xXOjkQ3onu1FJEFr0SW1gC7cKk1uF8kGRs=
golang.org/x/tools v0.0.0-20190312170243-e65039ee4138/go.mod h1:LCzVGOaR6xXOjkQ3onu1FJEFr0SW1gC7cKk1uF8kGRs=
golang.org/x/tools v0.0.0-20190328211700-ab21143f2384/go.mod h1:LCzVGOaR6xXOjkQ3onu1FJEFr0SW1gC7cKk1uF8kGRs=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/tools v0.0.0-20190425150028-36563e24a262/go.mod h1:RgjU9mgBXZiqYHBnxXauZ1Gv1EHHAz9KjViQ78xBX0Q=
golang.org/x/tools v0.0.0-20190425163242-31fd60d6bfdc/go.mod h1:RgjU9mgBXZiqYHBnxXauZ1Gv1EHHAz9KjViQ78xBX0Q=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/tools v0.0.0-20190506145303-2d16b83fe98c/go.mod h1:RgjU9mgBXZiqYHBnxXauZ1Gv1EHHAz9KjViQ78xBX0Q=
golang.org/x/tools v0.0.0-20190524140312-2c0ae7006135/go.mod h1:RgjU9mgBXZiqYHBnxXauZ1Gv1EHHAz9KjViQ78xBX0Q=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/tools v0.0.0-20190606124116-d0a3d012864b/go.mod h1:/rFqwRUd4F7ZHNgwSSTFct+R/Kf4OFW1sUzUTQQTgfc=
golang.org/x/tools v0.0.0-20190621195816-6e04913cbbac/go.mod h1:/rFqwRUd4F7ZHNgwSSTFct+R/Kf4OFW1sUzUTQQTgfc=
golang.org/x/tools v0.0.0-20190628153133-6cdbf07be9d0/go.mod h1:/rFqwRUd4F7ZHNgwSSTFct+R/Kf4OFW1sUzUTQQTgfc=
golang.org/x/tools v0.0.0-20190816200558-6889da9d5479/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20190823170909-c4a336ef6a2f/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/tools v0.0.0-20190911174233-4f2ddba30aff/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20191012152004-8de300cfc20a/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20191029041327-9cc4af7d6b2c/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20191029190741-b9c20aec41a5/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20191112195655-aa38f8e97acc/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20191119224855-298f0cb1881e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/tools v0.0.0-20191125144606-a911d9008d1f/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20200103221440-774c71fcf114/go.mod h1:TB2adYChydJhpapKDTa4BR/hXlZSLoq2Wpct/0txZ28=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/tools v0.0.0-20200117161641-43d50277825c/go.mod h1:TB2adYChydJhpapKDTa4BR/hXlZSLoq2Wpct/0txZ28=
golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapKDTa4BR/hXlZSLoq2Wpct/0txZ28=
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
golang.org/x/tools v0.0.0-20201224043029-2b0845dc783e/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/tools v0.1.1/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
golang.org/x/tools v0.1.10/go.mod h1:Uh6Zz+xoGYZom868N8YTex3t7RhtHDBrE8Gzo9bV56E=
golang.org/x/tools v0.2.0 h1:G6AHpWxTMGY1KyEYoAQ5WTtIekUUvDNjan3ugu60JvE=
golang.org/x/tools v0.2.0/go.mod h1:y4OqIKeOV/fWJetJ8bXPU1sEVniLMIyDAZWeHdV+NTA=
golang.org/x/xerrors v0.0.0-20190410155217-1f06c39b4373/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20190513163551-3ee3066db522/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20220517211312-f3a8303e98df/go.mod h1:K8+ghG5WaK9qNqU5K3HdILfMLy1f3aNYFI/wnl100a8=
google.golang.org/api v0.0.0-20180910000450-7ca32eb868bf/go.mod h1:4mhQ8q/RsB7i+udVvVy5NUi08OU8ZlA0gRVgrF7VFY0=
google.golang.org/api v0.0.0-20181030000543-1d582fd0359e/go.mod h1:4mhQ8q/RsB7i+udVvVy5NUi08OU8ZlA0gRVgrF7VFY0=
google.golang.org/api v0.1.0/go.mod h1:UGEZY7KEX120AnNLIHFMKIo4obdJhkp2tPbaPlQx13Y=
google.golang.org/api v0.4.0/go.mod h1:8k5glujaEP+g9n7WNsDg8QP6cUVNI86fCNMcbazEtwE=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
google.golang.org/api v0.7.0/go.mod h1:WtwebWUNSVBH/HAw79HIFXZNqEvBhG+Ra+ax0hx3E3M=
google.golang.org/api v0.8.0/go.mod h1:o4eAsZoiT+ibD93RtjEohWalFOjRDx6CVaqeizhEnKg=
google.golang.org/api v0.9.0/go.mod h1:o4eAsZoiT+ibD93RtjEohWalFOjRDx6CVaqeizhEnKg=
google.golang.org/api v0.13.0/go.mod h1:iLdEw5Ide6rF15KTC1Kkl0iskquN2gFfn9o9XIsbkAI=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
google.golang.org/api v0.15.0/go.mod h1:iLdEw5Ide6rF15KTC1Kkl0iskquN2gFfn9o9XIsbkAI=
google.golang.org/api v0.20.0 h1:jz2KixHX7EcCPiQrySzPdnYT7DbINAypCqKZ1Z7GM40=
google.golang.org/api v0.20.0/go.mod h1:BwFmGc8tA3vsd7r/7kR8DY7iEEGSU04BFxCo5jP/sfE=
google.golang.org/appengine v1.1.0/go.mod h1:EbEs0AVv82hx2wNQdGPgUI5lhzA/G0D9YwlJXL52JkM=
google.golang.org/appengine v1.2.0/go.mod h1:xpcJRLb0r/rnEns0DIKYYv+WjYCduHsrkT7/EB5XEv4=
google.golang.org/appengine v1.3.0/go.mod h1:xpcJRLb0r/rnEns0DIKYYv+WjYCduHsrkT7/EB5XEv4=
google.golang.org/appengine v1.4.0/go.mod h1:xpcJRLb0r/rnEns0DIKYYv+WjYCduHsrkT7/EB5XEv4=
google.golang.org/appengine v1.5.0/go.mod h1:xpcJRLb0r/rnEns0DIKYYv+WjYCduHsrkT7/EB5XEv4=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
google.golang.org/appengine v1.6.1/go.mod h1:i06prIuMbXzDqacNJfV5OdTW448YApPu5ww/cMBSeb0=
google.golang.org/appengine v1.6.5/go.mod h1:8WjMMxjGQR8xUklV/ARdw2HLXBOI7O7uCIDZVag1xfc=
google.golang.org/appengine v1.6.6 h1:lMO5rYAqUxkmaj76jAkRUvt5JZgFymx/+Q5Mzfivuhc=
google.golang.org/appengine v1.6.6/go.mod h1:8WjMMxjGQR8xUklV/ARdw2HLXBOI7O7uCIDZVag1xfc=
2018-10-06 18:57:53 +01:00
google.golang.org/genproto v0.0.0-20180817151627-c66870c02cf8/go.mod h1:JiN7NxoALGmiZfu7CAH4rXhgtRTLTxftemlI0sWmxmc=
google.golang.org/genproto v0.0.0-20180831171423-11092d34479b/go.mod h1:JiN7NxoALGmiZfu7CAH4rXhgtRTLTxftemlI0sWmxmc=
google.golang.org/genproto v0.0.0-20181029155118-b69ba1387ce2/go.mod h1:JiN7NxoALGmiZfu7CAH4rXhgtRTLTxftemlI0sWmxmc=
google.golang.org/genproto v0.0.0-20181202183823-bd91e49a0898/go.mod h1:7Ep/1NZk928CDR8SjdVbjWNpdIf6nzjE3BTgJDr2Atg=
google.golang.org/genproto v0.0.0-20190306203927-b5d61aea6440/go.mod h1:VzzqZJRnGkLBvHegQrXjBqPurQTc5/KpmUdxsrq26oE=
google.golang.org/genproto v0.0.0-20190307195333-5fe7a883aa19/go.mod h1:VzzqZJRnGkLBvHegQrXjBqPurQTc5/KpmUdxsrq26oE=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
google.golang.org/genproto v0.0.0-20190418145605-e7d98fc518a7/go.mod h1:VzzqZJRnGkLBvHegQrXjBqPurQTc5/KpmUdxsrq26oE=
google.golang.org/genproto v0.0.0-20190425155659-357c62f0e4bb/go.mod h1:VzzqZJRnGkLBvHegQrXjBqPurQTc5/KpmUdxsrq26oE=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
google.golang.org/genproto v0.0.0-20190502173448-54afdca5d873/go.mod h1:VzzqZJRnGkLBvHegQrXjBqPurQTc5/KpmUdxsrq26oE=
google.golang.org/genproto v0.0.0-20190801165951-fa694d86fc64/go.mod h1:DMBHOl98Agz4BDEuKkezgsaosCRResVns1a3J2ZsMNc=
google.golang.org/genproto v0.0.0-20190819201941-24fa4b261c55/go.mod h1:DMBHOl98Agz4BDEuKkezgsaosCRResVns1a3J2ZsMNc=
google.golang.org/genproto v0.0.0-20190911173649-1774047e7e51/go.mod h1:IbNlFCBrqXvoKpeg0TB2l7cyZUmoaFKYIwrEpbDKLA8=
google.golang.org/genproto v0.0.0-20191108220845-16a3f7862a1a/go.mod h1:n3cpQtvxv34hfy77yVDNjmbRyujviMdxYliBSkLhpCc=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
google.golang.org/genproto v0.0.0-20200115191322-ca5a22157cba/go.mod h1:n3cpQtvxv34hfy77yVDNjmbRyujviMdxYliBSkLhpCc=
google.golang.org/genproto v0.0.0-20200526211855-cb27e3aa2013 h1:+kGHl1aib/qcwaRi1CbqBZ1rk19r85MNUf8HaBghugY=
google.golang.org/genproto v0.0.0-20200526211855-cb27e3aa2013/go.mod h1:NbSheEEYHJ7i3ixzK3sjbqSGDJWnxyFXZblF3eUsNvo=
google.golang.org/grpc v1.14.0/go.mod h1:yo6s7OP7yaDglbqo1J04qKzAhqBH6lvTonzMVmEdcZw=
google.golang.org/grpc v1.16.0/go.mod h1:0JHn/cJsOMiMfNA9+DeHDlAU7KAAB5GDlYFpa9MZMio=
google.golang.org/grpc v1.17.0/go.mod h1:6QZJwpn2B+Zp71q/5VxRsJ6NXXVCE5NRUHRo+f3cWCs=
google.golang.org/grpc v1.19.0/go.mod h1:mqu4LbDTu4XGKhr4mRzUsmM4RtVoemTSY81AxZiDr8c=
google.golang.org/grpc v1.20.1/go.mod h1:10oTOabMzJvdu6/UiuZezV6QK5dSlG84ov/aaiqXj38=
google.golang.org/grpc v1.21.1/go.mod h1:oYelfM1adQP15Ek0mdvEgi9Df8B9CZIaU1084ijfRaM=
google.golang.org/grpc v1.23.0/go.mod h1:Y5yQAOtifL1yxbo5wqy6BxZv8vAUGQwXBOALyacEbxg=
google.golang.org/grpc v1.26.0/go.mod h1:qbnxyOmOxrQa7FizSgH+ReBfzJrCY1pSN7KXBS8abTk=
google.golang.org/grpc v1.27.0/go.mod h1:qbnxyOmOxrQa7FizSgH+ReBfzJrCY1pSN7KXBS8abTk=
google.golang.org/grpc v1.27.1 h1:zvIju4sqAGvwKspUQOhwnpcqSbzi7/H6QomNNjTL4sk=
google.golang.org/grpc v1.27.1/go.mod h1:qbnxyOmOxrQa7FizSgH+ReBfzJrCY1pSN7KXBS8abTk=
google.golang.org/protobuf v0.0.0-20200109180630-ec00e32a8dfd/go.mod h1:DFci5gLYBciE7Vtevhsrf46CRTquxDuWsQurQQe4oz8=
google.golang.org/protobuf v0.0.0-20200221191635-4d8936d0db64/go.mod h1:kwYJMbMJ01Woi6D6+Kah6886xMZcty6N08ah7+eCXa0=
google.golang.org/protobuf v0.0.0-20200228230310-ab0ca4ff8a60/go.mod h1:cfTl7dwQJ+fmap5saPgwCLgHXTUD7jkjRqWcaiX5VyM=
google.golang.org/protobuf v1.20.1-0.20200309200217-e05f789c0967/go.mod h1:A+miEFZTKqfCUM6K7xSMQL9OKL/b6hQv+e19PK+JZNE=
google.golang.org/protobuf v1.21.0/go.mod h1:47Nbq4nVaFHyn7ilMalzfO3qCViNmqZ2kzikPIcrTAo=
google.golang.org/protobuf v1.22.0/go.mod h1:EGpADcykh3NcUnDUJcl1+ZksZNG86OlYog2l/sGQquU=
google.golang.org/protobuf v1.23.0/go.mod h1:EGpADcykh3NcUnDUJcl1+ZksZNG86OlYog2l/sGQquU=
google.golang.org/protobuf v1.23.1-0.20200526195155-81db48ad09cc/go.mod h1:EGpADcykh3NcUnDUJcl1+ZksZNG86OlYog2l/sGQquU=
google.golang.org/protobuf v1.26.0-rc.1/go.mod h1:jlhhOSvTdKEhbULTjvd4ARK9grFBp09yW+WbY/TyQbw=
google.golang.org/protobuf v1.26.0/go.mod h1:9q0QmTI4eRPtz6boOQmLYwt+qCgq0jsYwAQnmE0givc=
google.golang.org/protobuf v1.27.1/go.mod h1:9q0QmTI4eRPtz6boOQmLYwt+qCgq0jsYwAQnmE0givc=
google.golang.org/protobuf v1.28.1 h1:d0NfwRgPtno5B1Wa6L2DAG+KivqkdutMf1UhdNx175w=
google.golang.org/protobuf v1.28.1/go.mod h1:HV8QOd/L58Z+nl8r43ehVNZIU/HEI6OcFqwMG9pJV4I=
gopkg.in/alecthomas/kingpin.v2 v2.2.6/go.mod h1:FMv+mEhP44yOT+4EoQTLFTRgOQ1FBLkstjWtayDeSgw=
2018-10-06 18:57:53 +01:00
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20180628173108-788fd7840127/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20190902080502-41f04d3bba15/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20201130134442-10cb98267c6c h1:Hei/4ADfdWqJk1ZMxUNpqntNwaWcugrBjAiHlqqRiVk=
gopkg.in/check.v1 v1.0.0-20201130134442-10cb98267c6c/go.mod h1:JHkPIbrfpd72SG/EVd6muEfDQjcINNoR0C8j2r3qZ4Q=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
gopkg.in/errgo.v2 v2.1.0/go.mod h1:hNsd1EY+bozCKY1Ytp96fpM3vjJbqLJn88ws8XvfDNI=
2018-10-06 18:57:53 +01:00
gopkg.in/fsnotify.v1 v1.4.7/go.mod h1:Tz8NjZHkW78fSQdbUxIjBTcgA1z1m8ZHf0WmKUhAMys=
gopkg.in/inconshreveable/log15.v2 v2.0.0-20180818164646-67afb5ed74ec/go.mod h1:aPpfJ7XW+gOuirDoZ8gHhLh3kZ1B08FtV2bbmy7Jv3s=
gopkg.in/inf.v0 v0.9.1/go.mod h1:cWUDdTG/fYaXco+Dcufb5Vnc6Gp2YChqWtbxRZE0mXw=
gopkg.in/ini.v1 v1.51.0/go.mod h1:pNLf8WUiyNEtQjuu5G5vTm06TEv9tsIgeAvK8hOrP4k=
gopkg.in/ini.v1 v1.62.0 h1:duBzk771uxoUuOlyRLkHsygud9+5lrlGjdFBb4mSKDU=
gopkg.in/ini.v1 v1.62.0/go.mod h1:pNLf8WUiyNEtQjuu5G5vTm06TEv9tsIgeAvK8hOrP4k=
gopkg.in/resty.v1 v1.12.0/go.mod h1:mDo4pnntr5jdWRML875a/NmxYqAlA73dVijT2AXvQQo=
gopkg.in/segmentio/analytics-go.v3 v3.1.0 h1:UzxH1uaGZRpMKDhJyBz0pexz6yUoBU3x8bJsRk/HV6U=
gopkg.in/segmentio/analytics-go.v3 v3.1.0/go.mod h1:4QqqlTlSSpVlWA9/9nDcPw+FkM2yv1NQoYjUbL9/JAw=
gopkg.in/tomb.v1 v1.0.0-20141024135613-dd632973f1e7 h1:uRGJdciOHaEIrze2W8Q3AKkepLTh2hOroT7a+7czfdQ=
2018-10-06 18:57:53 +01:00
gopkg.in/tomb.v1 v1.0.0-20141024135613-dd632973f1e7/go.mod h1:dt/ZhP58zS4L8KSrWDmTeBkI65Dw0HsyUHuEVlX15mw=
gopkg.in/yaml.v2 v2.0.0-20170812160011-eb3733d160e7/go.mod h1:JAlM8MvJe8wmxCU4Bli9HhUf9+ttbYbLASfIpnQbh74=
2018-10-06 18:57:53 +01:00
gopkg.in/yaml.v2 v2.2.1/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI=
gopkg.in/yaml.v2 v2.2.2/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI=
gopkg.in/yaml.v2 v2.2.4/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI=
gopkg.in/yaml.v2 v2.3.0/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI=
gopkg.in/yaml.v2 v2.4.0 h1:D8xgwECY7CYvx+Y2n4sBz93Jn9JRvxdiyyo8CTfuKaY=
gopkg.in/yaml.v2 v2.4.0/go.mod h1:RDklbk79AGWmwhnvt/jBztapEOGDOx6ZbXqjP6csGnQ=
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
gopkg.in/yaml.v3 v3.0.0-20200615113413-eeeca48fe776/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
grpc.go4.org v0.0.0-20170609214715-11d0a25b4919/go.mod h1:77eQGdRu53HpSqPFJFmuJdjuHRquDANNeA4x7B8WQ9o=
honnef.co/go/tools v0.0.0-20180728063816-88497007e858/go.mod h1:rf3lG4BRIbNafJWhAfAdb/ePZxsR/4RtNHQocxwk9r4=
honnef.co/go/tools v0.0.0-20190102054323-c2f93a96b099/go.mod h1:rf3lG4BRIbNafJWhAfAdb/ePZxsR/4RtNHQocxwk9r4=
honnef.co/go/tools v0.0.0-20190106161140-3f1c8253044a/go.mod h1:rf3lG4BRIbNafJWhAfAdb/ePZxsR/4RtNHQocxwk9r4=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
honnef.co/go/tools v0.0.0-20190418001031-e561f6794a2a/go.mod h1:rf3lG4BRIbNafJWhAfAdb/ePZxsR/4RtNHQocxwk9r4=
honnef.co/go/tools v0.0.0-20190523083050-ea95bdfd59fc/go.mod h1:rf3lG4BRIbNafJWhAfAdb/ePZxsR/4RtNHQocxwk9r4=
honnef.co/go/tools v0.0.1-2019.2.3 h1:3JgtbtFHMiCmsznwGVTUWbgGov+pVqnlf1dEJTNAXeM=
pkg/process: Now that we are trying to identify the root cause of the satellite load limitations (i.e. currently the satellite has a max ability of 400 rps for uploads and we need this to be higher), we are using the golang diagnostic tools to collect insight into what the bottlenecks are. We currently have a debug endpoint to gather some cpu and mem data, but it could be useful to have continuous profiling. GCP stackdriver has support for continuous profiling so lets set that up and see if it is helpful to gather more data. This PR adds support for [GCP continuous profiler](https://cloud.google.com/profiler) which allows enabling continuous cpu/mem profiling and the stats are sent to stackdriver in google cloud console. To enable the continuous profiling for a storj component, do the following: - prereq: the workload must be running in GKE and have Stackdriver Profiling IAM role permissions - provide the config flag `debug.profilename` in the config.yaml file for the workload (i.e. satellite api process, etc). The profilename should be the workload name, for example "satellite-api". - once the above config flag is provided, the profiler will be initialized and profiling stats will automatically be sent to GCP project where the workload is running and viewable in the Stackdriver Profile page in the console The current implementation assumes the workload is running in GKE, however if we find if useful we can add support to enable this from anywhere. But for simplicity, its configured this way assuming the main goal is to enable in production systems. Change-Id: Ibf8ebe2df7bf06fdd4951ee6a1e48854dd36ad47
2020-02-25 16:46:12 +00:00
honnef.co/go/tools v0.0.1-2019.2.3/go.mod h1:a3bituU0lyd329TUQxRnasdCoJDkEUEAqEt0JzvZhAg=
rsc.io/binaryregexp v0.2.0/go.mod h1:qTv7/COck+e2FymRvadv62gMdZztPaShugOCi3I+8D8=
sourcegraph.com/sourcegraph/go-diff v0.5.0/go.mod h1:kuch7UrkMzY0X+p9CRK03kfuPQ2zzQcaEFbx8wA8rck=
sourcegraph.com/sqs/pbtypes v0.0.0-20180604144634-d3ebe8f20ae4/go.mod h1:ketZ/q3QxT9HOBeFhu6RdvsftgpsbFHBF5Cas6cDKZ0=
storj.io/common v0.0.0-20220719163320-cd2ef8e1b9b0/go.mod h1:mCYV6Ud5+cdbuaxdPD5Zht/HYaIn0sffnnws9ErkrMQ=
storj.io/common v0.0.0-20230417173225-d1152ea3099a h1:B5AVXKsrqcynZdxznewcXU57VARFeRXSDpCmGnNwFtE=
storj.io/common v0.0.0-20230417173225-d1152ea3099a/go.mod h1:j5YdcshmpJL+oW1+3IyBnCsv/HGbFkbzNDtuZg24KF0=
storj.io/drpc v0.0.32/go.mod h1:6rcOyR/QQkSTX/9L5ZGtlZaE2PtXTTZl8d+ulSeeYEg=
storj.io/drpc v0.0.33-0.20230417171205-2ca712ef4ab5 h1:4iOQovjXb6oAMLrjf0Qc4MuRRLd9hXC7+CWqOt+AzCw=
storj.io/drpc v0.0.33-0.20230417171205-2ca712ef4ab5/go.mod h1:vR804UNzhBa49NOJ6HeLjd2H3MakC1j5Gv8bsOQT6N4=
storj.io/monkit-jaeger v0.0.0-20220915074555-d100d7589f41 h1:SVuEocEhZfFc13J1AmlVLitdGXTVrvmbzN4Z9C9Ms40=
storj.io/monkit-jaeger v0.0.0-20220915074555-d100d7589f41/go.mod h1:iK+dmHZZXQlW7ahKdNSOo+raMk5BDL2wbD62FIeXLWs=
storj.io/picobuf v0.0.1 h1:ekEvxSQCbEjTVIi/qxj2za13SJyfRE37yE30IBkZeT0=
storj.io/picobuf v0.0.1/go.mod h1:7ZTAMs6VesgTHbbhFU79oQ9hDaJ+MD4uoFQZ1P4SEz0=
storj.io/private v0.0.0-20230405095015-9e5bbc1c7ca8 h1:bUSNdChb1E5a/IFAy1l5zq+oZIYR5WPJ1JC71GC12dA=
storj.io/private v0.0.0-20230405095015-9e5bbc1c7ca8/go.mod h1:JxBlgPwo+P0OOJDSPJLwBJWUPnhnvrHOlKAN0aV/bhY=
storj.io/uplink v1.10.1-0.20230413192940-d37f89e8219e h1:y6CSddIrAAZ5tSeSLNlXRjo81NT0f4+vEJ5spS2YxuA=
storj.io/uplink v1.10.1-0.20230413192940-d37f89e8219e/go.mod h1:x6XS4VpmVMU2N/VXm7QGS2M4Ar1+FmWa0lZGYfhMCww=