ece3638664
There's no reason to restrict confined layers from preempting on the CPUs that they are entitled to. Allow preemption for confined layers. |
||
---|---|---|
.. | ||
src | ||
.gitignore | ||
build.rs | ||
Cargo.toml | ||
LICENSE | ||
meson.build | ||
README.md | ||
rustfmt.toml |
scx_layered
This is a single user-defined scheduler used within sched_ext, which is a Linux kernel feature which enables implementing kernel thread schedulers in BPF and dynamically loading them. Read more about sched_ext.
Overview
A highly configurable multi-layer BPF / user space hybrid scheduler.
scx_layered allows the user to classify tasks into multiple layers, and apply
different scheduling policies to those layers. For example, a layer could be
created of all tasks that are part of the user.slice
cgroup slice, and a
policy could be specified that ensures that the layer is given at least 80% CPU
utilization for some subset of CPUs on the system.
How To Install
Available as a Rust crate: cargo add scx_layered
Typical Use Case
scx_layered is designed to be highly customizable, and can be targeted for specific applications. For example, if you had a high-priority service that required priority access to all but 1 physical core to ensure acceptable p99 latencies, you could specify that the service would get priority access to all but 1 core on the system. If that service ends up not utilizing all of those cores, they could be used by other layers until they're needed.
Production Ready?
Yes. If tuned correctly, scx_layered should be performant across various CPU architectures and workloads.
That said, you may run into an issue with infeasible weights, where a task with a very high weight may cause the scheduler to incorrectly leave cores idle because it thinks they're necessary to accommodate the compute for a single task. This can also happen in CFS, and should soon be addressed for scx_layered.