scx/rust/scx_rustland_core
Andrea Righi d8985306f4 scx_rustland: user-space interactive task classifier
We don't need to send the number of voluntary context switches (nvcsw)
from BPF to user-space, as this information is already accessible in
user-space via procfs. Sending this data would only create unnecessary
overhead for schedulers that don't require it, and those that do can
easily retrieve it through procfs.

Therefore, drop this metric from scx_rustland_core and change
scx_rustland implementing an interactive task classifier fully in the
user-space part of the scheduler.

Also drop some options that are not provide any significant benefit
(also in preparation of a bigger refactoring to define a better API for
the user-space framework).

Signed-off-by: Andrea Righi <andrea.righi@linux.dev>
2024-08-06 17:56:58 +02:00
..
assets scx_rustland: user-space interactive task classifier 2024-08-06 17:56:58 +02:00
src scx_rustland_core alloc: Replaced RefCell with Mutex 2024-08-06 13:10:21 +00:00
.gitignore rust: introduce scx_rustland_core crate 2024-02-28 17:49:44 +01:00
bindings.h rust: introduce scx_rustland_core crate 2024-02-28 17:49:44 +01:00
bpf_h rust: introduce scx_rustland_core crate 2024-02-28 17:49:44 +01:00
build.rs scx_utils: introduce Builder() 2024-02-28 17:49:44 +01:00
Cargo.toml Bump versions for 1.0.1 release 2024-07-15 13:21:52 -10:00
LICENSE rust: introduce scx_rustland_core crate 2024-02-28 17:49:44 +01:00
meson.build Fetch and build bpftool by default 2024-03-11 10:00:01 -07:00
README.md scx_rustland_core: introduce per-task time slice 2024-03-03 15:06:56 +01:00

Framework to implement sched_ext schedulers running in user-space

sched_ext is a Linux kernel feature which enables implementing kernel thread schedulers in BPF and dynamically loading them.

This crate provides a generic layer that can be used to implement sched-ext schedulers that run in user-space.

It provides a generic BPF abstraction that is completely agnostic of the particular scheduling policy implemented in user-space.

Developers can use such abstraction to implement schedulers using pure Rust code, without having to deal with any internal kernel / BPF internal details.

API

The main BPF interface is provided by the BpfScheduler struct. When this object is initialized it will take care of registering and initializing the BPF component.

The scheduler then can use BpfScheduler instance to receive tasks (in the form of QueuedTask objects) and dispatch tasks (in the form of DispatchedTask objects), using respectively the methods dequeue_task() and dispatch_task().

Example usage (FIFO scheduler):

struct Scheduler<'a> {
    bpf: BpfScheduler<'a>,
}

impl<'a> Scheduler<'a> {
    fn init() -> Result<Self> {
        let topo = Topology::new().expect("Failed to build host topology");
        let bpf = BpfScheduler::init(5000, topo.nr_cpus() as i32, false, false, false)?;
        Ok(Self { bpf })
    }

    fn schedule(&mut self) {
        match self.bpf.dequeue_task() {
            Ok(Some(task)) => {
                // task.cpu < 0 is used to to notify an exiting task, in this
                // case we can simply ignore it.
                if task.cpu >= 0 {
                    let _ = self.bpf.dispatch_task(&DispatchedTask {
                        pid: task.pid,
                        cpu: task.cpu,
                        cpumask_cnt: task.cpumask_cnt,
                        slice_ns: 0,
                    });
                }
            }
            Ok(None) => {
                // Notify the BPF component that all tasks have been dispatched.
                self.bpf.update_tasks(Some(0), Some(0))?

                break;
            }
            Err(_) => {
                break;
            }
        }
    }

Moreover, a CPU ownership map (that keeps track of which PID runs on which CPU) can be accessed using the method get_cpu_pid(). This also allows to keep track of the idle and busy CPUs, with the corresponding PIDs associated to them.

BPF counters and statistics can be accessed using the methods nr_*_mut(), in particular nr_queued_mut() and nr_scheduled_mut() can be updated to notify the BPF component if the user-space scheduler has still some pending work to do or not.

Lastly, the methods exited() and shutdown_and_report() can be used respectively to test whether the BPF component exited, and to shutdown and report the exit message.