scx/scheds/c/scx_userland.c
Tejun Heo c77d101655 scheds/c: Sync to the new conventions
Sync with the in-kernel-tree example schedulers.
2024-04-29 10:13:46 -10:00

461 lines
12 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* A demo sched_ext user space scheduler which provides vruntime semantics
* using a simple ordered-list implementation.
*
* Each CPU in the system resides in a single, global domain. This precludes
* the need to do any load balancing between domains. The scheduler could
* easily be extended to support multiple domains, with load balancing
* happening in user space.
*
* Any task which has any CPU affinity is scheduled entirely in BPF. This
* program only schedules tasks which may run on any CPU.
*
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
* Copyright (c) 2022 Tejun Heo <tj@kernel.org>
* Copyright (c) 2022 David Vernet <dvernet@meta.com>
*/
#include <stdio.h>
#include <unistd.h>
#include <sched.h>
#include <signal.h>
#include <assert.h>
#include <libgen.h>
#include <pthread.h>
#include <bpf/bpf.h>
#include <sys/mman.h>
#include <sys/queue.h>
#include <sys/syscall.h>
#include <scx/common.h>
#include "scx_userland.h"
#include "scx_userland.bpf.skel.h"
const char help_fmt[] =
"A minimal userland sched_ext scheduler.\n"
"\n"
"See the top-level comment in .bpf.c for more details.\n"
"\n"
"Try to reduce `sysctl kernel.pid_max` if this program triggers OOMs.\n"
"\n"
"Usage: %s [-b BATCH]\n"
"\n"
" -b BATCH The number of tasks to batch when dispatching (default: 8)\n"
" -v Print libbpf debug messages\n"
" -h Display this help and exit\n";
/* Defined in UAPI */
#define SCHED_EXT 7
/* Number of tasks to batch when dispatching to user space. */
static __u32 batch_size = 8;
static bool verbose;
static volatile int exit_req;
static int enqueued_fd, dispatched_fd;
static struct scx_userland *skel;
static struct bpf_link *ops_link;
/* Stats collected in user space. */
static __u64 nr_vruntime_enqueues, nr_vruntime_dispatches, nr_vruntime_failed;
/* Number of tasks currently enqueued. */
static __u64 nr_curr_enqueued;
/* The data structure containing tasks that are enqueued in user space. */
struct enqueued_task {
LIST_ENTRY(enqueued_task) entries;
__u64 sum_exec_runtime;
double vruntime;
};
/*
* Use a vruntime-sorted list to store tasks. This could easily be extended to
* a more optimal data structure, such as an rbtree as is done in CFS. We
* currently elect to use a sorted list to simplify the example for
* illustrative purposes.
*/
LIST_HEAD(listhead, enqueued_task);
/*
* A vruntime-sorted list of tasks. The head of the list contains the task with
* the lowest vruntime. That is, the task that has the "highest" claim to be
* scheduled.
*/
static struct listhead vruntime_head = LIST_HEAD_INITIALIZER(vruntime_head);
/*
* The main array of tasks. The array is allocated all at once during
* initialization, based on /proc/sys/kernel/pid_max, to avoid having to
* dynamically allocate memory on the enqueue path, which could cause a
* deadlock. A more substantive user space scheduler could e.g. provide a hook
* for newly enabled tasks that are passed to the scheduler from the
* .prep_enable() callback to allows the scheduler to allocate on safe paths.
*/
struct enqueued_task *tasks;
static int pid_max;
static double min_vruntime;
static int libbpf_print_fn(enum libbpf_print_level level, const char *format, va_list args)
{
if (level == LIBBPF_DEBUG && !verbose)
return 0;
return vfprintf(stderr, format, args);
}
static void sigint_handler(int userland)
{
exit_req = 1;
}
static int get_pid_max(void)
{
FILE *fp;
int pid_max;
fp = fopen("/proc/sys/kernel/pid_max", "r");
if (fp == NULL) {
fprintf(stderr, "Error opening /proc/sys/kernel/pid_max\n");
return -1;
}
if (fscanf(fp, "%d", &pid_max) != 1) {
fprintf(stderr, "Error reading from /proc/sys/kernel/pid_max\n");
fclose(fp);
return -1;
}
fclose(fp);
return pid_max;
}
static int init_tasks(void)
{
pid_max = get_pid_max();
if (pid_max < 0)
return pid_max;
tasks = calloc(pid_max, sizeof(*tasks));
if (!tasks) {
fprintf(stderr, "Error allocating tasks array\n");
return -ENOMEM;
}
return 0;
}
static __u32 task_pid(const struct enqueued_task *task)
{
return ((uintptr_t)task - (uintptr_t)tasks) / sizeof(*task);
}
static int dispatch_task(__s32 pid)
{
int err;
err = bpf_map_update_elem(dispatched_fd, NULL, &pid, 0);
if (err) {
nr_vruntime_failed++;
} else {
nr_vruntime_dispatches++;
}
return err;
}
static struct enqueued_task *get_enqueued_task(__s32 pid)
{
if (pid >= pid_max)
return NULL;
return &tasks[pid];
}
static double calc_vruntime_delta(__u64 weight, __u64 delta)
{
double weight_f = (double)weight / 100.0;
double delta_f = (double)delta;
return delta_f / weight_f;
}
static void update_enqueued(struct enqueued_task *enqueued, const struct scx_userland_enqueued_task *bpf_task)
{
__u64 delta;
delta = bpf_task->sum_exec_runtime - enqueued->sum_exec_runtime;
enqueued->vruntime += calc_vruntime_delta(bpf_task->weight, delta);
if (min_vruntime > enqueued->vruntime)
enqueued->vruntime = min_vruntime;
enqueued->sum_exec_runtime = bpf_task->sum_exec_runtime;
}
static int vruntime_enqueue(const struct scx_userland_enqueued_task *bpf_task)
{
struct enqueued_task *curr, *enqueued, *prev;
curr = get_enqueued_task(bpf_task->pid);
if (!curr)
return ENOENT;
update_enqueued(curr, bpf_task);
nr_vruntime_enqueues++;
nr_curr_enqueued++;
/*
* Enqueue the task in a vruntime-sorted list. A more optimal data
* structure such as an rbtree could easily be used as well. We elect
* to use a list here simply because it's less code, and thus the
* example is less convoluted and better serves to illustrate what a
* user space scheduler could look like.
*/
if (LIST_EMPTY(&vruntime_head)) {
LIST_INSERT_HEAD(&vruntime_head, curr, entries);
return 0;
}
LIST_FOREACH(enqueued, &vruntime_head, entries) {
if (curr->vruntime <= enqueued->vruntime) {
LIST_INSERT_BEFORE(enqueued, curr, entries);
return 0;
}
prev = enqueued;
}
LIST_INSERT_AFTER(prev, curr, entries);
return 0;
}
static void drain_enqueued_map(void)
{
while (1) {
struct scx_userland_enqueued_task task;
int err;
if (bpf_map_lookup_and_delete_elem(enqueued_fd, NULL, &task)) {
skel->bss->nr_queued = 0;
skel->bss->nr_scheduled = nr_curr_enqueued;
return;
}
err = vruntime_enqueue(&task);
if (err) {
fprintf(stderr, "Failed to enqueue task %d: %s\n",
task.pid, strerror(err));
exit_req = 1;
return;
}
}
}
static void dispatch_batch(void)
{
__u32 i;
for (i = 0; i < batch_size; i++) {
struct enqueued_task *task;
int err;
__s32 pid;
task = LIST_FIRST(&vruntime_head);
if (!task)
break;
min_vruntime = task->vruntime;
pid = task_pid(task);
LIST_REMOVE(task, entries);
err = dispatch_task(pid);
if (err) {
/*
* If we fail to dispatch, put the task back to the
* vruntime_head list and stop dispatching additional
* tasks in this batch.
*/
LIST_INSERT_HEAD(&vruntime_head, task, entries);
break;
}
nr_curr_enqueued--;
}
skel->bss->nr_scheduled = nr_curr_enqueued;
}
static void *run_stats_printer(void *arg)
{
while (!exit_req) {
__u64 nr_failed_enqueues, nr_kernel_enqueues, nr_user_enqueues, total;
nr_failed_enqueues = skel->bss->nr_failed_enqueues;
nr_kernel_enqueues = skel->bss->nr_kernel_enqueues;
nr_user_enqueues = skel->bss->nr_user_enqueues;
total = nr_failed_enqueues + nr_kernel_enqueues + nr_user_enqueues;
printf("o-----------------------o\n");
printf("| BPF ENQUEUES |\n");
printf("|-----------------------|\n");
printf("| kern: %10llu |\n", nr_kernel_enqueues);
printf("| user: %10llu |\n", nr_user_enqueues);
printf("| failed: %10llu |\n", nr_failed_enqueues);
printf("| -------------------- |\n");
printf("| total: %10llu |\n", total);
printf("| |\n");
printf("|-----------------------|\n");
printf("| VRUNTIME / USER |\n");
printf("|-----------------------|\n");
printf("| enq: %10llu |\n", nr_vruntime_enqueues);
printf("| disp: %10llu |\n", nr_vruntime_dispatches);
printf("| failed: %10llu |\n", nr_vruntime_failed);
printf("o-----------------------o\n");
printf("\n\n");
fflush(stdout);
sleep(1);
}
return NULL;
}
static int spawn_stats_thread(void)
{
pthread_t stats_printer;
return pthread_create(&stats_printer, NULL, run_stats_printer, NULL);
}
static void print_example_warning(const char *sched)
{
const char *warning_fmt =
"**************************************************************************\n"
"\n"
"WARNING: %s is an example scheduler.\n"
"\n"
"It is meant to provide an example of a simple scheduler implementation,\n"
"and is not meant to be run in production environments. If you want to\n"
"run a scheduler that makes decisions in user space, it is recommended\n"
"to instead use use *scx_rustland*.\n"
"\n"
"Please do not open GitHub issues in the event of poor performance, or\n"
"the scheduler being evicted due to a runnable task timeout.\n"
"If running this scheduler causes a system crash, or for the\n"
"whole system to hang indefinitely, please open a GitHub issue.\n"
"\n"
"**************************************************************************\n\n";
printf(warning_fmt, sched);
}
static void pre_bootstrap(int argc, char **argv)
{
int err;
__u32 opt;
struct sched_param sched_param = {
.sched_priority = sched_get_priority_max(SCHED_EXT),
};
err = init_tasks();
if (err)
exit(err);
libbpf_set_print(libbpf_print_fn);
signal(SIGINT, sigint_handler);
signal(SIGTERM, sigint_handler);
/*
* Enforce that the user scheduler task is managed by sched_ext. The
* task eagerly drains the list of enqueued tasks in its main work
* loop, and then yields the CPU. The BPF scheduler only schedules the
* user space scheduler task when at least one other task in the system
* needs to be scheduled.
*/
err = syscall(__NR_sched_setscheduler, getpid(), SCHED_EXT, &sched_param);
SCX_BUG_ON(err, "Failed to set scheduler to SCHED_EXT");
while ((opt = getopt(argc, argv, "b:vh")) != -1) {
switch (opt) {
case 'b':
batch_size = strtoul(optarg, NULL, 0);
break;
case 'v':
verbose = true;
break;
default:
fprintf(stderr, help_fmt, basename(argv[0]));
exit(opt != 'h');
}
}
/*
* It's not always safe to allocate in a user space scheduler, as an
* enqueued task could hold a lock that we require in order to be able
* to allocate.
*/
err = mlockall(MCL_CURRENT | MCL_FUTURE);
SCX_BUG_ON(err, "Failed to prefault and lock address space");
}
static void bootstrap(char *comm)
{
skel = SCX_OPS_OPEN(userland_ops, scx_userland);
skel->rodata->num_possible_cpus = libbpf_num_possible_cpus();
assert(skel->rodata->num_possible_cpus > 0);
skel->rodata->usersched_pid = getpid();
assert(skel->rodata->usersched_pid > 0);
SCX_OPS_LOAD(skel, userland_ops, scx_userland, uei);
enqueued_fd = bpf_map__fd(skel->maps.enqueued);
dispatched_fd = bpf_map__fd(skel->maps.dispatched);
assert(enqueued_fd > 0);
assert(dispatched_fd > 0);
SCX_BUG_ON(spawn_stats_thread(), "Failed to spawn stats thread");
print_example_warning(basename(comm));
ops_link = SCX_OPS_ATTACH(skel, userland_ops);
}
static void sched_main_loop(void)
{
while (!exit_req) {
/*
* Perform the following work in the main user space scheduler
* loop:
*
* 1. Drain all tasks from the enqueued map, and enqueue them
* to the vruntime sorted list.
*
* 2. Dispatch a batch of tasks from the vruntime sorted list
* down to the kernel.
*
* 3. Yield the CPU back to the system. The BPF scheduler will
* reschedule the user space scheduler once another task has
* been enqueued to user space.
*/
drain_enqueued_map();
dispatch_batch();
sched_yield();
}
}
int main(int argc, char **argv)
{
__u64 ecode;
pre_bootstrap(argc, argv);
restart:
bootstrap(argv[0]);
sched_main_loop();
exit_req = 1;
bpf_link__destroy(ops_link);
ecode = UEI_REPORT(skel, uei);
scx_userland__destroy(skel);
if (UEI_ECODE_RESTART(ecode))
goto restart;
return 0;
}