scx/scheds/c/scx_central.bpf.c
Tejun Heo 466b7984c2 Sync from kernel - a748db0c8c6a ("tools/sched_ext: Receive misc updates from SCX repo")
Sync from sched_ext/for-6.12-fixes a748db0c8c6a ("tools/sched_ext: Receive
misc updates from SCX repo")

  git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext.git for-6.12-fixes

- cgroup support + scx_flatcg updates.

- scx_bpf_dispatch[_vtime]_from_dsq() + scx_qmap updates.

- COMPAT macros.
2024-09-25 12:34:03 -10:00

362 lines
10 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* A central FIFO sched_ext scheduler which demonstrates the followings:
*
* a. Making all scheduling decisions from one CPU:
*
* The central CPU is the only one making scheduling decisions. All other
* CPUs kick the central CPU when they run out of tasks to run.
*
* There is one global BPF queue and the central CPU schedules all CPUs by
* dispatching from the global queue to each CPU's local dsq from dispatch().
* This isn't the most straightforward. e.g. It'd be easier to bounce
* through per-CPU BPF queues. The current design is chosen to maximally
* utilize and verify various SCX mechanisms such as LOCAL_ON dispatching.
*
* b. Tickless operation
*
* All tasks are dispatched with the infinite slice which allows stopping the
* ticks on CONFIG_NO_HZ_FULL kernels running with the proper nohz_full
* parameter. The tickless operation can be observed through
* /proc/interrupts.
*
* Periodic switching is enforced by a periodic timer checking all CPUs and
* preempting them as necessary. Unfortunately, BPF timer currently doesn't
* have a way to pin to a specific CPU, so the periodic timer isn't pinned to
* the central CPU.
*
* c. Preemption
*
* Kthreads are unconditionally queued to the head of a matching local dsq
* and dispatched with SCX_DSQ_PREEMPT. This ensures that a kthread is always
* prioritized over user threads, which is required for ensuring forward
* progress as e.g. the periodic timer may run on a ksoftirqd and if the
* ksoftirqd gets starved by a user thread, there may not be anything else to
* vacate that user thread.
*
* SCX_KICK_PREEMPT is used to trigger scheduling and CPUs to move to the
* next tasks.
*
* This scheduler is designed to maximize usage of various SCX mechanisms. A
* more practical implementation would likely put the scheduling loop outside
* the central CPU's dispatch() path and add some form of priority mechanism.
*
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
* Copyright (c) 2022 Tejun Heo <tj@kernel.org>
* Copyright (c) 2022 David Vernet <dvernet@meta.com>
*/
#include <scx/common.bpf.h>
char _license[] SEC("license") = "GPL";
enum {
FALLBACK_DSQ_ID = 0,
MS_TO_NS = 1000LLU * 1000,
TIMER_INTERVAL_NS = 1 * MS_TO_NS,
};
const volatile s32 central_cpu;
const volatile u32 nr_cpu_ids = 1; /* !0 for veristat, set during init */
const volatile u64 slice_ns = SCX_SLICE_DFL;
bool timer_pinned = true;
u64 nr_total, nr_locals, nr_queued, nr_lost_pids;
u64 nr_timers, nr_dispatches, nr_mismatches, nr_retries;
u64 nr_overflows;
UEI_DEFINE(uei);
struct {
__uint(type, BPF_MAP_TYPE_QUEUE);
__uint(max_entries, 4096);
__type(value, s32);
} central_q SEC(".maps");
/* can't use percpu map due to bad lookups */
bool RESIZABLE_ARRAY(data, cpu_gimme_task);
u64 RESIZABLE_ARRAY(data, cpu_started_at);
struct central_timer {
struct bpf_timer timer;
};
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 1);
__type(key, u32);
__type(value, struct central_timer);
} central_timer SEC(".maps");
static bool vtime_before(u64 a, u64 b)
{
return (s64)(a - b) < 0;
}
s32 BPF_STRUCT_OPS(central_select_cpu, struct task_struct *p,
s32 prev_cpu, u64 wake_flags)
{
/*
* Steer wakeups to the central CPU as much as possible to avoid
* disturbing other CPUs. It's safe to blindly return the central cpu as
* select_cpu() is a hint and if @p can't be on it, the kernel will
* automatically pick a fallback CPU.
*/
return central_cpu;
}
void BPF_STRUCT_OPS(central_enqueue, struct task_struct *p, u64 enq_flags)
{
s32 pid = p->pid;
__sync_fetch_and_add(&nr_total, 1);
/*
* Push per-cpu kthreads at the head of local dsq's and preempt the
* corresponding CPU. This ensures that e.g. ksoftirqd isn't blocked
* behind other threads which is necessary for forward progress
* guarantee as we depend on the BPF timer which may run from ksoftirqd.
*/
if ((p->flags & PF_KTHREAD) && p->nr_cpus_allowed == 1) {
__sync_fetch_and_add(&nr_locals, 1);
scx_bpf_dispatch(p, SCX_DSQ_LOCAL, SCX_SLICE_INF,
enq_flags | SCX_ENQ_PREEMPT);
return;
}
if (bpf_map_push_elem(&central_q, &pid, 0)) {
__sync_fetch_and_add(&nr_overflows, 1);
scx_bpf_dispatch(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, enq_flags);
return;
}
__sync_fetch_and_add(&nr_queued, 1);
if (!scx_bpf_task_running(p))
scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
}
static bool dispatch_to_cpu(s32 cpu)
{
struct task_struct *p;
s32 pid;
bpf_repeat(BPF_MAX_LOOPS) {
if (bpf_map_pop_elem(&central_q, &pid))
break;
__sync_fetch_and_sub(&nr_queued, 1);
p = bpf_task_from_pid(pid);
if (!p) {
__sync_fetch_and_add(&nr_lost_pids, 1);
continue;
}
/*
* If we can't run the task at the top, do the dumb thing and
* bounce it to the fallback dsq.
*/
if (!bpf_cpumask_test_cpu(cpu, p->cpus_ptr)) {
__sync_fetch_and_add(&nr_mismatches, 1);
scx_bpf_dispatch(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, 0);
bpf_task_release(p);
/*
* We might run out of dispatch buffer slots if we continue dispatching
* to the fallback DSQ, without dispatching to the local DSQ of the
* target CPU. In such a case, break the loop now as will fail the
* next dispatch operation.
*/
if (!scx_bpf_dispatch_nr_slots())
break;
continue;
}
/* dispatch to local and mark that @cpu doesn't need more */
scx_bpf_dispatch(p, SCX_DSQ_LOCAL_ON | cpu, SCX_SLICE_INF, 0);
if (cpu != central_cpu)
scx_bpf_kick_cpu(cpu, SCX_KICK_IDLE);
bpf_task_release(p);
return true;
}
return false;
}
void BPF_STRUCT_OPS(central_dispatch, s32 cpu, struct task_struct *prev)
{
if (cpu == central_cpu) {
/* dispatch for all other CPUs first */
__sync_fetch_and_add(&nr_dispatches, 1);
bpf_for(cpu, 0, nr_cpu_ids) {
bool *gimme;
if (!scx_bpf_dispatch_nr_slots())
break;
/* central's gimme is never set */
gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids);
if (!gimme || !*gimme)
continue;
if (dispatch_to_cpu(cpu))
*gimme = false;
}
/*
* Retry if we ran out of dispatch buffer slots as we might have
* skipped some CPUs and also need to dispatch for self. The ext
* core automatically retries if the local dsq is empty but we
* can't rely on that as we're dispatching for other CPUs too.
* Kick self explicitly to retry.
*/
if (!scx_bpf_dispatch_nr_slots()) {
__sync_fetch_and_add(&nr_retries, 1);
scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
return;
}
/* look for a task to run on the central CPU */
if (scx_bpf_consume(FALLBACK_DSQ_ID))
return;
dispatch_to_cpu(central_cpu);
} else {
bool *gimme;
if (scx_bpf_consume(FALLBACK_DSQ_ID))
return;
gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids);
if (gimme)
*gimme = true;
/*
* Force dispatch on the scheduling CPU so that it finds a task
* to run for us.
*/
scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
}
}
void BPF_STRUCT_OPS(central_running, struct task_struct *p)
{
s32 cpu = scx_bpf_task_cpu(p);
u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
if (started_at)
*started_at = bpf_ktime_get_ns() ?: 1; /* 0 indicates idle */
}
void BPF_STRUCT_OPS(central_stopping, struct task_struct *p, bool runnable)
{
s32 cpu = scx_bpf_task_cpu(p);
u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
if (started_at)
*started_at = 0;
}
static int central_timerfn(void *map, int *key, struct bpf_timer *timer)
{
u64 now = bpf_ktime_get_ns();
u64 nr_to_kick = nr_queued;
s32 i, curr_cpu;
curr_cpu = bpf_get_smp_processor_id();
if (timer_pinned && (curr_cpu != central_cpu)) {
scx_bpf_error("Central timer ran on CPU %d, not central CPU %d",
curr_cpu, central_cpu);
return 0;
}
bpf_for(i, 0, nr_cpu_ids) {
s32 cpu = (nr_timers + i) % nr_cpu_ids;
u64 *started_at;
if (cpu == central_cpu)
continue;
/* kick iff the current one exhausted its slice */
started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
if (started_at && *started_at &&
vtime_before(now, *started_at + slice_ns))
continue;
/* and there's something pending */
if (scx_bpf_dsq_nr_queued(FALLBACK_DSQ_ID) ||
scx_bpf_dsq_nr_queued(SCX_DSQ_LOCAL_ON | cpu))
;
else if (nr_to_kick)
nr_to_kick--;
else
continue;
scx_bpf_kick_cpu(cpu, SCX_KICK_PREEMPT);
}
bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN);
__sync_fetch_and_add(&nr_timers, 1);
return 0;
}
int BPF_STRUCT_OPS_SLEEPABLE(central_init)
{
u32 key = 0;
struct bpf_timer *timer;
int ret;
ret = scx_bpf_create_dsq(FALLBACK_DSQ_ID, -1);
if (ret)
return ret;
timer = bpf_map_lookup_elem(&central_timer, &key);
if (!timer)
return -ESRCH;
if (bpf_get_smp_processor_id() != central_cpu) {
scx_bpf_error("init from non-central CPU");
return -EINVAL;
}
bpf_timer_init(timer, &central_timer, CLOCK_MONOTONIC);
bpf_timer_set_callback(timer, central_timerfn);
ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN);
/*
* BPF_F_TIMER_CPU_PIN is pretty new (>=6.7). If we're running in a
* kernel which doesn't have it, bpf_timer_start() will return -EINVAL.
* Retry without the PIN. This would be the perfect use case for
* bpf_core_enum_value_exists() but the enum type doesn't have a name
* and can't be used with bpf_core_enum_value_exists(). Oh well...
*/
if (ret == -EINVAL) {
timer_pinned = false;
ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, 0);
}
if (ret)
scx_bpf_error("bpf_timer_start failed (%d)", ret);
return ret;
}
void BPF_STRUCT_OPS(central_exit, struct scx_exit_info *ei)
{
UEI_RECORD(uei, ei);
}
SCX_OPS_DEFINE(central_ops,
/*
* We are offloading all scheduling decisions to the central CPU
* and thus being the last task on a given CPU doesn't mean
* anything special. Enqueue the last tasks like any other tasks.
*/
.flags = SCX_OPS_ENQ_LAST,
.select_cpu = (void *)central_select_cpu,
.enqueue = (void *)central_enqueue,
.dispatch = (void *)central_dispatch,
.running = (void *)central_running,
.stopping = (void *)central_stopping,
.init = (void *)central_init,
.exit = (void *)central_exit,
.name = "central");