scx/scheds/rust/scx_bpfland
Tejun Heo 152a8471cc scx_bpfland: When reporting stats, use interval deltas
Three of the reported stats are cumulative. While they obviously can be
processed into delta values, that holds for the other direction too and the
cumulative values are difficult to make intutive sense of. Report interval
delta values instead.

Note that a stats client can reliably build back cumulative values even
under heavy system contention - the delta values reported between two
consecutive reads are guaranteed to be correct regardless of the duration of
the interval.
2024-08-24 23:14:57 -10:00
..
src scx_bpfland: When reporting stats, use interval deltas 2024-08-24 23:14:57 -10:00
build.rs scx_bpfland: update copyright info 2024-08-14 16:17:54 +02:00
Cargo.lock scx_bpfland: Convert to scx_stats 2024-08-24 23:14:55 -10:00
Cargo.toml scx_bpfland: Convert to scx_stats 2024-08-24 23:14:55 -10:00
LICENSE scheds: introduce scx_bpfland 2024-06-27 17:28:42 +02:00
meson.build scx_bpfland: properly integrate with meson build 2024-06-28 21:37:00 +02:00
README.md scheds: introduce scx_bpfland 2024-06-27 17:28:42 +02:00
rustfmt.toml scheds: introduce scx_bpfland 2024-06-27 17:28:42 +02:00

scx_bpfland

This is a single user-defined scheduler used within sched_ext, which is a Linux kernel feature which enables implementing kernel thread schedulers in BPF and dynamically loading them. Read more about sched_ext.

Overview

scx_bpfland: a vruntime-based sched_ext scheduler that prioritizes interactive workloads.

This scheduler is derived from scx_rustland, but it is fully implemented in BPF with minimal user-space Rust part to process command line options, collect metrics and logs out scheduling statistics. The BPF part makes all the scheduling decisions.

Tasks are categorized as either interactive or regular based on their average rate of voluntary context switches per second. Tasks that exceed a specific voluntary context switch threshold are classified as interactive. Interactive tasks are prioritized in a higher-priority queue, while regular tasks are placed in a lower-priority queue. Within each queue, tasks are sorted based on their weighted runtime: tasks that have higher weight (priority) or use the CPU for less time (smaller runtime) are scheduled sooner, due to their a higher position in the queue.

Moreover, each task gets a time slice budget. When a task is dispatched, it receives a time slice equivalent to the remaining unused portion of its previously allocated time slice (with a minimum threshold applied). This gives latency-sensitive workloads more chances to exceed their time slice when needed to perform short bursts of CPU activity without being interrupted (i.e., real-time audio encoding / decoding workloads).

Typical Use Case

Interactive workloads, such as gaming, live streaming, multimedia, real-time audio encoding/decoding, especially when these workloads are running alongside CPU-intensive background tasks.

In this scenario scx_bpfland ensures that interactive workloads maintain a high level of responsiveness.

Production Ready?

The scheduler is based on scx_rustland, implementing nearly the same scheduling algorithm with minor changes and optimizations to be fully implemented in BPF.

Given that the scx_rustland scheduling algorithm has been extensively tested, this scheduler can be considered ready for production use.