4fef4ed7dd
scx_layered: Iteration fix for upstream p->thread_group removal |
||
---|---|---|
meson-scripts | ||
rust | ||
scheds | ||
LICENSE | ||
meson.build | ||
meson.options | ||
OVERVIEW.md | ||
README.md |
Sched_ext Schedulers and Tools
sched_ext is a Linux kernel feature which enables implementing kernel thread schedulers in BPF and dynamically loading them. This repository contains various scheduler implementations and support utilities.
sched_ext enables safe and rapid iterations of scheduler implementations radically widening the scope of scheduling strategies that can be experimented with and deployed even in massive and complex production environments.
- The scx_layered case study concretely demonstrates the power and benefits of sched_ext.
- For more detailed high-level discussion, please refer to the overview document.
While the kernel feature is not upstream yet, we believe sched_ext has a reasonable chance of landing upstream in the foreseeable future. Both Meta and Google are fully committed to sched_ext and Meta is in the process of mass production deployment. See (#kernel-feature-status) for more details.
In all example shell commands, $SCX
refers to the root of this repository.
Getting Started
TO BE WRITTEN.
Repository Structure
scx
|-- scheds : Sched_ext scheduler implementations
| |-- include : Shared BPF and user C include files including vmlinux.h
| |-- kernel-examples : Example schedulers from kernel tree (tools/sched_ext)
| \-- rust-user : Schedulers that use Rust for userspace component
\-- rust : Rust support code
\-- scx_utils : Common utility library for rust-user schedulers
Build & Install
meson
is the main build system but each Rust sub-project is its own
self-contained cargo project and can be built and published separately. The
followings are the dependencies and version requirements.
meson
: >=1.2, build scripts undermeson-scripts/
usebash
and standard utilities includingawk
.clang
: >=16 required, >=17 recommendedlibbpf
: >=1.2.2 required, >=1.3 recommended (RESIZE_ARRAY
support is new in 1.3)- Rust toolchain: >=1.72
libelf
,libz
,libzstd
if linking against staiclibbpf.a
Setting Up and Building
meson
always uses a separate build directory. Running the following
commands in the root of the tree builds and installs all schedulers under
~/bin
.
$ cd $SCX
$ meson setup build --prefix ~
$ cd build
$ meson compile
$ meson install
Note that meson compile
step is not strictly necessary as install
implies compile
. The above also will build debug binaries with
optimizations turned off, which is useful for development but they aren't
optimized and big. For actual use you want to build release binaries.
meson
uses -D
argument to specify build options. The configuration
options can be specified at setup
time but can also be changed afterwards
and meson
will do the right thing. To switch to release builds, run the
following in the build directory and then compile and install again.
$ meson configure -Dbuildtype=release
Running meson configure
without any argument shows all current build
options. For more information on meson
arguments and built-in options,
please refer to meson --help
and its
documentation.
Building Specific Schedulers and Binary Locations
If you just want to build a subset of schedulers, you can specify the
scheduler names as arguments to meson compile
. For example, if we just
want to build the simple example scheduler
scheds/kernel-examples/scx_simple
and the Rust userspace scheduler
scheds/rust-user/scx_rusty
:
$ cd $SCX
$ meson setup build -Dbuildtype=release
$ cd build
$ meson compile -v scx_simple scx_rusty
You can also specify -v
if you want to see the commands being used:
$ meson compile -v scx_pair
For C userspace schedulers such as the ones under scheds/kernel-examples
,
the built binaries are located in the same directory under the build root.
For example, here, the scx_simple
binary can be found at
$SCX/build/scheds/kernel-examples/scx_simple
.
For Rust userspace schedulers such as the ones under scheds/rust-user
, the
same directory under the build root is used as the cargo build target
directory. Thus, here, the scx_rusty
binary can be found at
$SCX/build/scheds/rust-user/scx_rusty/release/scx_rusty
.
SCX specific build options
While the default options should work in most cases, it may be desirable to
override some of the toolchains and dependencies - e.g. to directly use
libbpf
built from the kernel source tree. The following meson
build
options can be used in such cases.
bpf_clang
:clang
to use when compiling.bpf.c
bpftool
:bpftool
to use when generating.bpf.skel.h
libbpf_a
: Staticlibbpf.a
to uselibbpf_h
:libbpf
header directories, only meaningful withlibbpf_a
optioncargo
:cargo
to use when building rust sub-projects
For example, let's say you want to use bpftool
and libbpf
shipped in the
kernel tree located at $KERNEL
. We need to build bpftool
in the kernel
tree first, set up SCX build with the related options and then build &
install.
$ cd $KERNEL
$ make -C tools/bpf/bpftool
$ cd $SCX
$ BPFTOOL=$KERNEL/tools/bpf/bpftool
$ meson setup build -Dbuildtype=release -Dprefix=~/bin \
-Dbpftool=$BPFTOOL/bpftool \
-Dlibbpf_a=$BPFTOOL/libbpf/libbpf.a \
-Dlibbpf_h=$BPFTOOL/libbpf/include
$ cd build
$ meson install
Note that we use libbpf
which was produced as a part of bpftool
build
process rather than buliding libbpf
directly. This is necessary because
libbpf
header files need to be installed for them to be in the expected
relative locations.
Working with Rust Sub-projects
Each Rust sub-project is its own self-contained cargo project. When buildng
as a part of this repository, meson
invokes cargo
with the appropriate
options and environment variables to sync the build environment. When
building separately by running cargo build
directly in a sub-project
directory, it will automatically figure out build environment. Please take a
look at the
scx_utils::BpfBuilder
documentation for details.
For example, the following builds and runs the scx_rusty
scheduler:
$ cd $SCX/scheds/rust-user/scx_rusty
$ cargo build --release
$ cargo run --release
Here too, the build
step is not strictly necessary as it's implied by
run
.
Note that Rust userspace schedulers are published on crates.io
and can be
built and installed without cloning this repository as long as the necessary
toolchains are available. Simply run:
$ cargo install scx_rusty
and scx_rusty
will be built and installed as ~/.cargo/bin/scx_rusty
.
Kernel Feature Status
The kernel feature is not yet upstream and can be found in the sched_ext repository. The followings are important branches:
sched_ext
: The main development branch. This branch periodically pulls from the bpf-next tree to stay in sync with the kernel and BPF developments.sched_ext-release-*
: sched_ext backports on top of released kernels. We plan to maintain backports for a few recent kernel releases until sched_ext is merged upstream. Currently maintained backports:sched_ext-vN
: Patchsets posted upstream. The v4 LKML thread has high-level discussions.
Getting in Touch
We aim to build a friendly and approachable community around sched_ext. You can reach us through the following channels:
- github: https://github.com/sched-ext/scx
- Slack: https://schedextworkspace.slack.com
- Reddit: https://reddit.com/r/sched_ext
We also hold weekly office hours every monday. Please see the #office-hours channel on slack for details.