scx/scheds
Andrea Righi 28cb1ec5cb scx_bpfland: enhanced task affinity
Aggressively try to keep tasks running on the same CPU / cache / domain,
to achieve higher performance when the system is not over commissioned.

This is done by giving a second chance in ops.enqueue(), in addition to
ops.select_cpu(), to find an idle CPU close to the previously used CPU.

Moreover, even if the task is dispatched to the global DSQs, always try
to check if there is an idle CPU in the primary domain that can
immediately consume the task.

= Results =

This change seems to provide a minor, but consistent, boost of
performance with the CPU-intensive benchmarks from the CachyOS
benchmarks selection [1].

Similar results can also be noticed with some WebGL benchmarks [2], when
system usage is close to its maximum capacity.

Test:
 - cachyos-benchmarker

System:
 - AMD Ryzen 7 5800X 8-Core Processor

Metrics:
 - total time: elapsed time of all benchmarks
 - total score: geometric mean of all benchmarks

NOTE: total time is the most relevant, since it gives a measure of the
aggregate performance, while the total score emphasizes more on
performance consistency across all benchmarks.

== Results: summary ==

 +-------------------------+---------------------+---------------------+
 |         Scheduler       |    Total Time       |    Total Score      |
 |                         |    (less = better)  |    (less = better)  |
 +-------------------------+---------------------+---------------------+
 |                 EEVDF   |  624.44 sec         |      123.68         |
 |               bpfland   |  625.34 sec         |      122.21         |
 | bpfland-task-affinity   |  623.67 sec         |      122.27         |
 +-------------------------+---------------------+---------------------+

== Conclusion ==

With this patch applied, bpfland shows both a better performance and
consistency. Although the gains are small (less than 1%), they are still
significant for this type of benchmark and consistently appear across
multiple runs.

[1] https://github.com/CachyOS/cachyos-benchmarker
[2] https://webglsamples.org/aquarium/aquarium.html

Tested-by: Piotr Gorski < piotr.gorski@cachyos.org >
Signed-off-by: Andrea Righi <andrea.righi@linux.dev>
2024-08-28 10:30:54 +02:00
..
c Update to vmlinux-v6.10-rc2-g1edab907b57d.h 2024-07-12 11:13:34 -10:00
include Update to vmlinux-v6.10-rc2-g1edab907b57d.h 2024-07-12 11:13:34 -10:00
rust scx_bpfland: enhanced task affinity 2024-08-28 10:30:54 +02:00
meson.build Restructure scheds folder names 2023-12-17 13:14:31 -08:00
README.md Restructure scheds folder names 2023-12-17 13:14:31 -08:00
sync-to-kernel.sh sync-to-kernel.sh: Sync scx_central and scx_flatcg 2024-02-23 14:21:03 -10:00

SCHED_EXT SCHEDULERS

Introduction

This directory contains the repo's schedulers.

Some of these schedulers are simply examples of different types of schedulers that can be built using sched_ext. They can be loaded and used to schedule on your system, but their primary purpose is to illustrate how various features of sched_ext can be used.

Other schedulers are actually performant, production-ready schedulers. That is, for the correct workload and with the correct tuning, they may be deployed in a production environment with acceptable or possibly even improved performance. Some of the examples could be improved to become production schedulers.

Please see the following README files for details on each of the various types of schedulers:

  • rust describes all of the schedulers with rust user space components. All of these schedulers are production ready.
  • c describes all of the schedulers with C user space components. All of these schedulers are production ready.

Note on syncing

Note that there is a sync-to-kernel.sh script in this directory. This is used to sync any changes to the specific schedulers with the Linux kernel tree. If you've made any changes to a scheduler in please use the script to synchronize with the sched_ext Linux kernel tree:

$ ./sync-to-kernel.sh /path/to/kernel/tree