Sync from sched_ext/for-6.11 1edab907b57d ("sched_ext/scx_qmap: Pick idle
CPU for direct dispatch on !wakeup enqueues")
git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext.git for-6.11
- cgroup support hasn't landed in the upstream kernel yet. This most likely
will happen in a few weeks. For the time being, disable scx_flatcg,
scx_pair and scx_mitosis.
- Compat macro for DSQ task iterator dropped. This is now a part of
the baseline.
- scx_bpf_consume() isn't upstream yet. BPF interfacing side is still being
discussed. Dropped example usage from tools/sched_ext. None of the
practical schedulers use it, so this should be fine for now.
- scx_bpf_cpu_rq() added.
- AUTOATTACH workaround for newer libbpf versions added.
Overview
========
This scheduler is derived from scx_rustland, but it is fully implemented
in BFP with minimal user-space Rust part to process command line
options, collect metrics and logs out scheduling statistics.
Unlike scx_rustland, all scheduling decisions are made by the BPF
component.
Motivation
==========
The primary goal of this scheduler is to act as a performance baseline
for comparison with scx_rustland, allowing for a better assessment of
the overhead caused by kernel/user-space interactions.
It can also be used to deploy prototypes initially tested in the
scx_rustland scheduler. In fact, this scheduler is expected to
outperform scx_rustland, due to the elimitation of the kernel/user-space
overhead.
Scheduling policy
=================
scx_bpfland is a vruntime-based sched_ext scheduler that prioritizes
interactive workloads. Its scheduling policy closely mirrors
scx_rustland, but it has been re-implemented in BPF with some small
adjustments.
Tasks are categorized as either interactive or regular based on their
average rate of voluntary context switches per second: tasks that exceed
a specific voluntary context switch threshold are classified as
interactive.
Interactive tasks are prioritized in a higher-priority DSQ, while
regular tasks are placed in a lower-priority DSQ. Within each queue,
tasks are sorted based on their weighted runtime, using the built-in scx
vtime ordering capabilities (scx_bpf_dispatch_vtime()).
Moreover, each task gets a time slice budget. When a task is dispatched,
it receives a time slice equivalent to the remaining unused portion of
its previously allocated time slice (with a minimum threshold applied).
This gives latency-sensitive workloads more chances to exceed their time
slice when needed to perform short bursts of CPU activity without being
interrupted (i.e., real-time audio encoding / decoding workloads).
Results
=======
According to the initial test results, using the same benchmark "playing
a videogame while recompiling the kernel", this scheduler seems to
provide a +5% improvement in the frames-per-second (fps) compared to
scx_rustland, with video games such as Cyberpunk 2077, Counter-Strike 2
and Baldur's Gate 3.
Initial test results indicate that this scheduler offers around a +5%
improvement in frames-per-second (fps) compared to scx_rustland when
using the benchmark "playing a video game while recompiling the kernel".
This improvement was observed in games such as Cyberpunk 2077,
Counter-Strike 2, and Baldur's Gate 3.
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
scx_mitosis is a dynamic affinity scheduler which assigns cgroups to
Cells and Cells to discrete sets of CPUs. The number of cells is dynamic
as is the CPU assignment. BPF mostly just does vtime scheduling for each
cell, tracks load, and responds to reconfiguration from userspace.
Userspace makes decisions about how to assign cgroups to cells and cells
to cpus.
This is not yet a complete scheduler, much of the userspace logic is a
placeholder as I experiment with better logic. I also want to add richer
scheduling semantics to userspace, e.g. so that cells can do more
"soft-affinity" rather than the strict partitioning implemented
currently.
Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Rename scx_rustlite to scx_rustland to better represent the mirroring of
scx_userland (in C), but implemented in Rust.
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
This scheduler is made of a BPF component (dispatcher) that implements
the low level sched-ext functionalities and a user-space counterpart
(scheduler), written in Rust, that implements the actual scheduling
policy.
The main goal of this scheduler is to be easy to read and well
documented, so that newcomers (i.e., students, researchers, junior devs,
etc.) can use this as a template to quickly experiment scheduling
theory.
For this reason the design of this scheduler is mostly focused on
simplicity and code readability.
Moreover, the BPF dispatcher is completely agnostic of the particular
scheduling policy implemented by the user-space scheduler. For this
reason developers that are willing to use this scheduler to experiment
scheduling policies should be able to simply modify the Rust component,
without having to deal with any internal kernel / BPF details.
Future improvements:
- Transfer the responsibility of determining the CPU for executing a
particular task to the user-space scheduler.
Right now this logic is still fully implemented in the BPF part and
the user-space scheduler can only decide the order of execution of
the tasks, that significantly restricts the scheduling policies that
can be implemented in the user-space scheduler.
- Experiment the possibility to send tasks from the user-space
scheduler to the BPF dispatcher using a batch size, instead of
draining the task queue completely and sending all the tasks at once
every single time.
A batch size should help to reduce the overhead and it should also
help to reduce the wakeups of the user-space scheduler.
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
- combine c and kernel-examples as it's confusing to have both
- rename 'rust-user' and 'c-user' to just 'rust' and 'c', which is simpler
- update and fix sync-to-kernel.sh