Fixing alignment, moving a couple bail! calls around, and adding a
missing break from move_between_nodes() that lets us bail out of a loop
early.
Signed-off-by: David Vernet <void@manifault.com>
As Tejun pointed out in review, the disadvantage of using
push/pull/balanced lists is that if the domains inside the nodes are
balanced, we won't be able to push load between them. I'd originally
done it that way both as an optimization, but also to allow me to
iterate over the lists of pushable and pullable domains mutably. That
was addressed in the prior commit, but the nodes themselves were still
put into 3 buckets.
I think this is generally just a cleaner way of doing things, so let's
just collapse the nodes into a flat list as well. This prevents us from
having to coalesce the lists, std::mem::swap them, etc.
Signed-off-by: David Vernet <void@manifault.com>
Tejun pointed out that a possible issue exists in the current
implementation, wherein if you have two NUMA nodes that are imbalanced,
but their domains are internally balanced, we'll fail to migrate between
them if all nodes are in the balanced_nodes list.
To address this, let's just use a single global list for all types of
domains, and do checking internally for imbalances. The reason it was
done this way in the first place was to allow me to mutably iterate over
both vectors in a nested loop. The way around that is to just use loop
{} and push/pop domains from the list.
We could do the same thing for the NUMA nodes themselves, which are also
in 3 separate lists in the LoadBalancer. We'll do that in a subsequent
commit.
Signed-off-by: David Vernet <void@manifault.com>
In scx_rusty, a CPU that is going to go idle will attempt to steal tasks
from remote domains when its domain has no tasks to run, and a remote
domain has at least greedy_threshold enqueued tasks. This stealing is
temporary, but of course has a cost in that the CPU that's stealing the
task may cause it to suffer from cache misses, or in the case of
multi-node machines, remote NUMA accesses and working sets split across
multiple domains.
Given the higher cost of x NUMA work stealing, let's add a separate flag
that lets users tune the threshold for doing cross NUMA greedy task
stealing.
Signed-off-by: David Vernet <void@manifault.com>
We removed the debug!() output that was previously present in main.rs. Let's
add more debug!() output that helps debug the current LB hierarchy.
Signed-off-by: David Vernet <void@manifault.com>
The scx_rusty load balancer is currently no longer exporting statistics such as
domain load averages, load sums, etc. Now that we're also balancing by NUMA,
we'll need a way to hierarchically illustrate load balancing statistics. This
patch adds support for that.
Signed-off-by: David Vernet <void@manifault.com>
updating stats printing
Signed-off-by: David Vernet <void@manifault.com>
Users may want to toggle whether tasks can be temporarily sent to idle CPUs on
remote NUMA nodes. By default, we want it to be disabled as a task spanning
multiple NUMA nodes will end up having its working set spanning both nodes,
which is probably not desirable. However, in case a workload really wants to
encourage work conservation, let's add a flag that allows them to toggle it.
Signed-off-by: David Vernet <void@manifault.com>
scx_rusty currently pushes tasks to idle cores if the direct greedy threshold
is exceeded, even if the core is on a remote NUMA node. This behavior is
probably not desired in most scenarios. The worst that will happen if a task is
pushed to an idle core in the same node is some L3 cache miss traffic, but for
multiple NUMA nodes, it could cause the task to have its working set span
multiple nodes.
Let's disable direct greedy work stealing across NUMA nodes. A future commit
will add a flag that's disabled by default, and let's users turn this on if
they really want to encourage work conservation.
Signed-off-by: David Vernet <void@manifault.com>
Right now, scx_rusty has no notion of domains spanning NUMA nodes, and makes no
distinction when making load balancing decisions, or work stealing. This can
cause problems on multi-NUMA machines, as load balancing and work stealing
across NUMA nodes has significantly different cost from across L3 cache
boundaries.
In order to better support multi-NUMA machines, this commit adds another layer
to the rusty load balancer, which balances across NUMA nodes using a different
cost function from balancing across domains. Load balancing now takes place
over the span of two passes:
1. In the first pass, we fix imbalances across NUMA nodes by moving tasks
between domains across those NUMA node boundaries. We require a load
imbalance of at least 17% in order to move load at this stage. The ratio of
load imbalance we attempt to adjust (50%) and the maximum amount of load
we're allowed to push out of a domain (50%) is still the same as when
balancing between domains inside a NUMA node, but this is easy to tune with
the current setup.
2. Once we've balanced across NUMA nodes, we iterate over all nodes and balance
between the domains within each NUMA node. The cost function here is the
same as what it has been thus far: we require at least a 5% imbalance in
order to trigger load balancing.
There are a few additional changes / improvements to load balancing in this
commit:
1. NUMA nodes and domains are now ordered according to their load by using
SortedVec objects. We were previously using BTreeMap keyed by load, but this
was suboptimal due to the fact that it doesn't allow duplicate entries.
2. We're no longer exporting load balancing statistics as a vector of data such
as load sums, averages, and imbalances. This is instead all encapsulated in
the load balancing hierarchy we setup in lb.load_balance(). These statistics
are not yet exported, but they will be in a subsequent commit.
One of the issues with this commit is that it does introduce some
almost-identical logic that somehow begs to be deduplicated. For example, when
we balance between NUMA nodes, the logic for iterating over push nodes and
pushing to pull nodes is very similar to the logic of iterating over push
domains and pull domains when balancing within a node. It may be that this can
be improved.
The following are some benchmarks run on an Intel Xeon Gold 6138 (2 x 40 core
processor):
kcompile
--------
On Commit a27648c74210 ("afs: Fix setting of mtime when creating a
file/dir/symlink"):
1. make allyesconfig
2. make -j $(nproc) built-in.a
3. make -j clean
4. goto 2
Runtime
-------
o-----------o-----------o----------o
| scx_rusty | CFS | Delta |
---------o-----------o-----------o----------o
Mean | 562.688s | 566.085s | -.6% |
---------o-----------o-----------o----------o
Variance | 0.54387 | 0.72431 | -24.9% |
---------o-----------o-----------o----------o
o-----------o-----------o----------o
| rusty NUMA| rusty ORIG| Delta |
---------o-----------o-----------o----------o
Mean | 562.688s | 563.209s | -.092% |
---------o-----------o-----------o----------o
Variance | 0.54387 | 0.42038 | 29.38% |
---------o-----------o-----------o----------o
scx_rusty with NUMA awareness clearly beats CFS, but only barely beats
scx_rusty without it. This isn't necessarily super surprising given that
this is kcompile, which has very poor front-end CPU locality. Further
experimentation with toggling the cost function for performing
migrations may improve this further.
CPU util
--------
o-----------o-----------o----------o
| scx_rusty | CFS | Delta |
---------o-----------o-----------o----------o
Mean | 7654.25% | 7551.67% | 1.11% |
---------o-----------o-----------o----------o
Variance | 165.35714 | 158.3333 | 4.436% |
---------o-----------o-----------o----------o
o-----------o-----------o----------o
| rusty NUMA| rusty ORIG| Delta |
---------o-----------o-----------o----------o
Mean | 7654.25% | 7641.57% | 0.1659% |
---------o-----------o-----------o----------o
Variance | 165.35714 | 1230.619 | -86.5% |
---------o-----------o-----------o----------o
As expected, CPU util is quite a bit higher with scx_rusty than it is
with CFS. Further experiments that could be interesting are always
enabling direct-greedy stealing between domains within a NUMA node, and
then comparing rusty NUMA and rusty ORIG. rusty NUMA prevents stealing
between NUMA nodes, so this would show whether the locality introduced
by NUMA awareness appropriately offsets the loss of work conservation.
Major PFs
---------
o-----------o-----------o----------o
| scx_rusty | CFS | Delta |
---------o-----------o-----------o----------o
Mean | 5332 | 3950 | 36.566% |
---------o-----------o-----------o----------o
Variance | 6975.5 | 5986.333 | 16.5237% |
---------o-----------o-----------o----------o
o-----------o-----------o----------o
| rusty NUMA| rusty ORIG| Delta |
---------o-----------o-----------o----------o
Mean | 5332 | 5336.5 | -.084% |
---------o-----------o-----------o----------o
Variance | 6975.5 | 955.5 | 630.03% |
---------o-----------o-----------o----------o
Also as expected, major page faults are far highe higher with scx_rusty
than with CFS. This is expected even with NUMA awareness, given that
scx_rusty is still less sticky than CFS.
Further experiments that could be interesting are tuning the threshold
for which we perform x NUMA migrations to try and keep this value even
lower. The rate of major page faults between rusty NUMA and rusty ORIG
were very close, though rusty NUMA was a bit lower.
Signed-off-by: David Vernet <void@manifault.com>
More cleanup of scx_rusty. Let's move the LoadBalancer out of rusty.rs and into
its own file. It will soon be extended quite a bit to support multi-NUMA and
other multivariate LB cost functions, so it's time to clean things up and split
it out.
Signed-off-by: David Vernet <void@manifault.com>
rusty.rs is growing a bit unwieldy. We're going to want to update its load
balancing logic somewhat significantly to account for multi-NUMA and other cost
functions, so let's start cleaning the code up so that things are more
logically segmented and easier to work with.
To start, we move the Tuner and DomainGroup/Domain objects into their own
modules.
Signed-off-by: David Vernet <void@manifault.com>
This is to potentinally reduce issues with folks
using different versions of libbpf at runtime.
This also:
- makes static linking of libbpf the default
- adds steps in `meson setup` to fetch libbpf and make it
Now that we have a new 'infeasible' crate that abstracts the logic for
implementing the infeasible weights solution. Let's update rusty to use
it.
Signed-off-by: David Vernet <void@manifault.com>
scx_rusty has logic in the scheduler to inspect the host to
automatically build scheduling domains across every L3 cache. This would
be generically useful for many different types of schedulers, so let's
add it to the scx_utils crate so it can be used by others.
Signed-off-by: David Vernet <void@manifault.com>
As described in [0], there is an open problem in load balancing called
the "infeasible weights" problem. Essentially, the problem boils down to
the fact that a task with disproportionately high load can be granted
more CPU time than they can actually consume per their duty cycle.
This patch implements a solution to that problem, wherein we apply the
algorithm described in this paper to adjust all infeasible weights in
the system down to a feasible wight that gives them their full duty
cycle, while allowing the remaining feasible tasks on the system to
share the remaining compute capacity on the machine.
[0]: https://drive.google.com/file/d/1fAoWUlmW-HTp6akuATVpMxpUpvWcGSAv/view?usp=drive_link
Signed-off-by: David Vernet <void@manifault.com>
After updates to reflect the updated init and direct dispatch API, the
schedulers aren't compatible with older kernels. Bump versions and publish
releases.
In the latest kernel, sched_ext API has changed in two areas:
- ops.prep_enable/cancel_enable/enable/disable() replaced with
ops.init_task/enable/disable/exit_task().
- scx_bpf_dispatch() can now be called from ops.select_cpu(). Also,
SCX_ENQ_LOCAL flag is removed. Instead, users can call
scx_bpf_select_cpu_dfl() from ops.select_cpu() and use the @is_idle out
param value to determine whether to dispatch directly.
This commit updates all schedules so that they build.
- Init functions renamed / merged / split.
- ops.select_cpu() is added to several schedulers and local direct
disptching logic is moved there.
This is the minimum update which is need to make the schedulers build and
work. It needs further update to e.g. move vtime udpates to ops.enable().
This because each scheduler has it's own Rust Crate
and it's better if they had a README associated with each one.
https://crates.io/crates/scx_layered
- combine c and kernel-examples as it's confusing to have both
- rename 'rust-user' and 'c-user' to just 'rust' and 'c', which is simpler
- update and fix sync-to-kernel.sh