scx-upstream/scheds/rust/scx_rustland
Andrea Righi 5cf113f058 scx_rustland_core: provide DispatchedTask API methods
Provide distinct methods to set the target CPU and the per-task time
slice to dispatched tasks.

Moreover, also provide a constructor to create a DispatchedTask from a
QueuedTask (this allows to automatically bounce a task from the
scheduler to the BPF dispatcher without having to take care of setting
the individual task's attributes).

This also allows to make most of the attributes of DispatchedTask
private, especially it allows to hide cpumask_cnt, that should be only
used internally between the BPF and the user-space component.

Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
2024-03-03 15:49:37 +01:00
..
src scx_rustland_core: provide DispatchedTask API methods 2024-03-03 15:49:37 +01:00
.gitignore scx_rustland_core: generate source files in-tree 2024-02-28 17:49:44 +01:00
build.rs scx_rustland_core: introduce RustLandBuilder() 2024-02-28 17:49:44 +01:00
Cargo.toml scx_rustland_core: introduce RustLandBuilder() 2024-02-28 17:49:44 +01:00
LICENSE scx_rustland: rename from scx_rustlite 2023-12-22 00:20:14 +01:00
meson.build Add libbpf as a submodule 2024-03-01 12:39:35 -08:00
README.md scx_rustland: update documentation 2024-02-28 17:49:44 +01:00
rustfmt.toml scx_rustland: rename from scx_rustlite 2023-12-22 00:20:14 +01:00

scx_rustland

This is a single user-defined scheduler used within sched_ext, which is a Linux kernel feature which enables implementing kernel thread schedulers in BPF and dynamically loading them. Read more about sched_ext.

Overview

scx_rustland is made of a BPF component (scx_rustland_core) that implements the low level sched-ext functionalities and a user-space counterpart (scheduler), written in Rust, that implements the actual scheduling policy.

How To Install

Available as a Rust crate: cargo add scx_rustland

Typical Use Case

scx_rustland is designed to prioritize interactive workloads over background CPU-intensive workloads. For this reason the typical use case of this scheduler involves low-latency interactive applications, such as gaming, video conferencing and live streaming.

scx_rustland is also designed to be an "easy to read" template that can be used by any developer to quickly experiment more complex scheduling policies fully implemented in Rust.

Production Ready?

Not quite. For production scenarios, other schedulers are likely to exhibit better performance, as offloading all scheduling decisions to user-space comes with a certain cost.

However, a scheduler entirely implemented in user-space holds the potential for seamless integration with sophisticated libraries, tracing tools, external services (e.g., AI), etc.

Hence, there might be situations where the benefits outweigh the overhead, justifying the use of this scheduler in a production environment.

Demo

scx_rustland-terraria

The key takeaway of this demo is to demonstrate that , despite the overhead of running a scheduler in user-space, we can still obtain interesting results and, in this particular case, even outperform the default Linux scheduler (EEVDF) in terms of application responsiveness (fps), while a CPU intensive workload (parallel kernel build) is running in the background.