4a7b806dd2
When the no_freq_scaling changes during runtime in the autopilot mode, the last target freq set would not be 1024. So the performance mode enabled by the autopilot mode would not run in the best profile. Hence, we set the target freq to 1024 always when no_freq_scaling is set. Signed-off-by: Changwoo Min <changwoo@igalia.com> |
||
---|---|---|
.. | ||
src | ||
build.rs | ||
Cargo.toml | ||
LICENSE | ||
meson.build | ||
README.md | ||
rustfmt.toml |
scx_lavd
This is a single user-defined scheduler used within sched_ext, which is a Linux kernel feature which enables implementing kernel thread schedulers in BPF and dynamically loading them. Read more about sched_ext.
Overview
scx_lavd is a BPF scheduler that implements an LAVD (Latency-criticality Aware Virtual Deadline) scheduling algorithm. While LAVD is new and still evolving, its core ideas are 1) measuring how much a task is latency critical and 2) leveraging the task's latency-criticality information in making various scheduling decisions (e.g., task's deadline, time slice, etc.). As the name implies, LAVD is based on the foundation of deadline scheduling. This scheduler consists of the BPF part and the rust part. The BPF part makes all the scheduling decisions; the rust part loads the BPF code and conducts other chores (e.g., printing sampled scheduling decisions).
Typical Use Case
scx_lavd is initially motivated by gaming workloads. It aims to improve interactivity and reduce stuttering while playing games on Linux. Hence, this scheduler's typical use case involves highly interactive applications, such as gaming, which requires high throughput and low tail latencies.
Production Ready?
Yes, scx_lavd should be performant across various CPU architectures, but it mainly targets single CCX / single-socket systems. It creates a separate scheduling domain per-LLC, per-core type (e.g., P or E core on Intel, big or LITTLE on ARM), and per-NUMA domain, so the default balanced profile should be performant.