scx-upstream/scheds/c/scx_userland.bpf.c
David Vernet 4108ece204
scx_userland: Increase scx_userland timeout
This is meant to be an example scheduler that won't necessarily run well
in production. Let's remove the 3 second timeout and use the system
default of 30.

Signed-off-by: David Vernet <void@manifault.com>
2024-02-04 16:23:18 -06:00

349 lines
9.3 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* A minimal userland scheduler.
*
* In terms of scheduling, this provides two different types of behaviors:
* 1. A global FIFO scheduling order for _any_ tasks that have CPU affinity.
* All such tasks are direct-dispatched from the kernel, and are never
* enqueued in user space.
* 2. A primitive vruntime scheduler that is implemented in user space, for all
* other tasks.
*
* Some parts of this example user space scheduler could be implemented more
* efficiently using more complex and sophisticated data structures. For
* example, rather than using BPF_MAP_TYPE_QUEUE's,
* BPF_MAP_TYPE_{USER_}RINGBUF's could be used for exchanging messages between
* user space and kernel space. Similarly, we use a simple vruntime-sorted list
* in user space, but an rbtree could be used instead.
*
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
* Copyright (c) 2022 Tejun Heo <tj@kernel.org>
* Copyright (c) 2022 David Vernet <dvernet@meta.com>
*/
#include <scx/common.bpf.h>
#include "scx_userland.h"
/*
* Maximum amount of tasks enqueued/dispatched between kernel and user-space.
*/
#define MAX_ENQUEUED_TASKS 4096
char _license[] SEC("license") = "GPL";
const volatile bool switch_partial;
const volatile s32 usersched_pid;
/* !0 for veristat, set during init */
const volatile u32 num_possible_cpus = 64;
/* Stats that are printed by user space. */
u64 nr_failed_enqueues, nr_kernel_enqueues, nr_user_enqueues;
/*
* Number of tasks that are queued for scheduling.
*
* This number is incremented by the BPF component when a task is queued to the
* user-space scheduler and it must be decremented by the user-space scheduler
* when a task is consumed.
*/
volatile u64 nr_queued;
/*
* Number of tasks that are waiting for scheduling.
*
* This number must be updated by the user-space scheduler to keep track if
* there is still some scheduling work to do.
*/
volatile u64 nr_scheduled;
struct user_exit_info uei;
/*
* The map containing tasks that are enqueued in user space from the kernel.
*
* This map is drained by the user space scheduler.
*/
struct {
__uint(type, BPF_MAP_TYPE_QUEUE);
__uint(max_entries, MAX_ENQUEUED_TASKS);
__type(value, struct scx_userland_enqueued_task);
} enqueued SEC(".maps");
/*
* The map containing tasks that are dispatched to the kernel from user space.
*
* Drained by the kernel in userland_dispatch().
*/
struct {
__uint(type, BPF_MAP_TYPE_QUEUE);
__uint(max_entries, MAX_ENQUEUED_TASKS);
__type(value, s32);
} dispatched SEC(".maps");
/* Per-task scheduling context */
struct task_ctx {
bool force_local; /* Dispatch directly to local DSQ */
};
/* Map that contains task-local storage. */
struct {
__uint(type, BPF_MAP_TYPE_TASK_STORAGE);
__uint(map_flags, BPF_F_NO_PREALLOC);
__type(key, int);
__type(value, struct task_ctx);
} task_ctx_stor SEC(".maps");
/*
* Flag used to wake-up the user-space scheduler.
*/
static volatile u32 usersched_needed;
/*
* Set user-space scheduler wake-up flag (equivalent to an atomic release
* operation).
*/
static void set_usersched_needed(void)
{
__sync_fetch_and_or(&usersched_needed, 1);
}
/*
* Check and clear user-space scheduler wake-up flag (equivalent to an atomic
* acquire operation).
*/
static bool test_and_clear_usersched_needed(void)
{
return __sync_fetch_and_and(&usersched_needed, 0) == 1;
}
static bool is_usersched_task(const struct task_struct *p)
{
return p->pid == usersched_pid;
}
static bool keep_in_kernel(const struct task_struct *p)
{
return p->nr_cpus_allowed < num_possible_cpus;
}
static struct task_struct *usersched_task(void)
{
struct task_struct *p;
p = bpf_task_from_pid(usersched_pid);
/*
* Should never happen -- the usersched task should always be managed
* by sched_ext.
*/
if (!p)
scx_bpf_error("Failed to find usersched task %d", usersched_pid);
return p;
}
s32 BPF_STRUCT_OPS(userland_select_cpu, struct task_struct *p,
s32 prev_cpu, u64 wake_flags)
{
if (keep_in_kernel(p)) {
s32 cpu;
struct task_ctx *tctx;
tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0);
if (!tctx) {
scx_bpf_error("Failed to look up task-local storage for %s", p->comm);
return -ESRCH;
}
if (p->nr_cpus_allowed == 1 ||
scx_bpf_test_and_clear_cpu_idle(prev_cpu)) {
tctx->force_local = true;
return prev_cpu;
}
cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0);
if (cpu >= 0) {
tctx->force_local = true;
return cpu;
}
}
return prev_cpu;
}
static void dispatch_user_scheduler(void)
{
struct task_struct *p;
p = usersched_task();
if (p) {
scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, SCX_SLICE_DFL, 0);
bpf_task_release(p);
}
}
static void enqueue_task_in_user_space(struct task_struct *p, u64 enq_flags)
{
struct scx_userland_enqueued_task task = {};
task.pid = p->pid;
task.sum_exec_runtime = p->se.sum_exec_runtime;
task.weight = p->scx.weight;
if (bpf_map_push_elem(&enqueued, &task, 0)) {
/*
* If we fail to enqueue the task in user space, put it
* directly on the global DSQ.
*/
__sync_fetch_and_add(&nr_failed_enqueues, 1);
scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, SCX_SLICE_DFL, enq_flags);
} else {
__sync_fetch_and_add(&nr_user_enqueues, 1);
set_usersched_needed();
}
}
void BPF_STRUCT_OPS(userland_enqueue, struct task_struct *p, u64 enq_flags)
{
if (keep_in_kernel(p)) {
u64 dsq_id = SCX_DSQ_GLOBAL;
struct task_ctx *tctx;
tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0);
if (!tctx) {
scx_bpf_error("Failed to lookup task ctx for %s", p->comm);
return;
}
if (tctx->force_local)
dsq_id = SCX_DSQ_LOCAL;
tctx->force_local = false;
scx_bpf_dispatch(p, dsq_id, SCX_SLICE_DFL, enq_flags);
__sync_fetch_and_add(&nr_kernel_enqueues, 1);
return;
} else if (!is_usersched_task(p)) {
enqueue_task_in_user_space(p, enq_flags);
}
}
void BPF_STRUCT_OPS(userland_dispatch, s32 cpu, struct task_struct *prev)
{
if (test_and_clear_usersched_needed())
dispatch_user_scheduler();
bpf_repeat(MAX_ENQUEUED_TASKS) {
s32 pid;
struct task_struct *p;
if (bpf_map_pop_elem(&dispatched, &pid))
break;
/*
* The task could have exited by the time we get around to
* dispatching it. Treat this as a normal occurrence, and simply
* move onto the next iteration.
*/
p = bpf_task_from_pid(pid);
if (!p)
continue;
scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, SCX_SLICE_DFL, 0);
bpf_task_release(p);
}
}
/*
* A CPU is about to change its idle state. If the CPU is going idle, ensure
* that the user-space scheduler has a chance to run if there is any remaining
* work to do.
*/
void BPF_STRUCT_OPS(userland_update_idle, s32 cpu, bool idle)
{
/*
* Don't do anything if we exit from and idle state, a CPU owner will
* be assigned in .running().
*/
if (!idle)
return;
/*
* A CPU is now available, notify the user-space scheduler that tasks
* can be dispatched, if there is at least one task waiting to be
* scheduled, either queued (accounted in nr_queued) or scheduled
* (accounted in nr_scheduled).
*
* NOTE: nr_queued is incremented by the BPF component, more exactly in
* enqueue(), when a task is sent to the user-space scheduler, then
* the scheduler drains the queued tasks (updating nr_queued) and adds
* them to its internal data structures / state; at this point tasks
* become "scheduled" and the user-space scheduler will take care of
* updating nr_scheduled accordingly; lastly tasks will be dispatched
* and the user-space scheduler will update nr_scheduled again.
*
* Checking both counters allows to determine if there is still some
* pending work to do for the scheduler: new tasks have been queued
* since last check, or there are still tasks "queued" or "scheduled"
* since the previous user-space scheduler run. If the counters are
* both zero it is pointless to wake-up the scheduler (even if a CPU
* becomes idle), because there is nothing to do.
*
* Keep in mind that update_idle() doesn't run concurrently with the
* user-space scheduler (that is single-threaded): this function is
* naturally serialized with the user-space scheduler code, therefore
* this check here is also safe from a concurrency perspective.
*/
if (nr_queued || nr_scheduled) {
/*
* Kick the CPU to make it immediately ready to accept
* dispatched tasks.
*/
set_usersched_needed();
scx_bpf_kick_cpu(cpu, 0);
}
}
s32 BPF_STRUCT_OPS(userland_init_task, struct task_struct *p,
struct scx_init_task_args *args)
{
if (bpf_task_storage_get(&task_ctx_stor, p, 0,
BPF_LOCAL_STORAGE_GET_F_CREATE))
return 0;
else
return -ENOMEM;
}
s32 BPF_STRUCT_OPS(userland_init)
{
if (num_possible_cpus == 0) {
scx_bpf_error("User scheduler # CPUs uninitialized (%d)",
num_possible_cpus);
return -EINVAL;
}
if (usersched_pid <= 0) {
scx_bpf_error("User scheduler pid uninitialized (%d)",
usersched_pid);
return -EINVAL;
}
if (!switch_partial)
scx_bpf_switch_all();
return 0;
}
void BPF_STRUCT_OPS(userland_exit, struct scx_exit_info *ei)
{
uei_record(&uei, ei);
}
SEC(".struct_ops.link")
struct sched_ext_ops userland_ops = {
.select_cpu = (void *)userland_select_cpu,
.enqueue = (void *)userland_enqueue,
.dispatch = (void *)userland_dispatch,
.update_idle = (void *)userland_update_idle,
.init_task = (void *)userland_init_task,
.init = (void *)userland_init,
.exit = (void *)userland_exit,
.flags = SCX_OPS_ENQ_LAST | SCX_OPS_KEEP_BUILTIN_IDLE,
.name = "userland",
};