Commit Graph

4 Commits

Author SHA1 Message Date
Tejun Heo
43950c65bd build: Use workspace to group rust sub-projects
meson build script was building each rust sub-project under rust/ and
scheds/rust/ separately. This means that each rust project is built
independently which leads to a couple problems - 1. There are a lot of
shared dependencies but they have to be built over and over again for each
proejct. 2. Concurrency management becomes sad - we either have to unleash
multiple cargo builds at the same time possibly thrashing the system or
build one by one.

We've been trying to solve this from meson side in vain. Thankfully, in
issue #546, @vimproved suggested using cargo workspace which makes the
sub-projects share the same target directory and built together by the same
cargo instance while still allowing each project to behave independently for
development and publishing purposes.

Make the following changes:

- Create two cargo workspaces - one under rust/, the other under
  scheds/rust/. Each contains all rust projects underneath it.

- Don't let meson descend into rust/. These are libraries used by the rust
  schedulers. No need to build them from meson. Cargo will build them as
  needed.

- Change the rust_scheds build target to invoke `cargo build` in
  scheds/rust/ and let cargo do its thing.

- Remove per-scheduler meson.build files and instead generate custom_targets
  in scheds/rust/meson.build which invokes `cargo build -p $SCHED`.

- This changes rust binary directory. Update README and
  meson-scripts/install_rust_user_scheds accordingly.

- Remove per-scheduler Cargo.lock as scheds/rust/Cargo.lock is shared by all
  schedulers now.

- Unify .gitignore handling.

The followings are build times on Ryzen 3975W:

Before:
  ________________________________________________________
  Executed in  165.93 secs    fish           external
     usr time   40.55 mins    2.71 millis   40.55 mins
     sys time    3.34 mins   36.40 millis    3.34 mins

After:
  ________________________________________________________
  Executed in   36.04 secs    fish           external
     usr time  336.42 secs    0.00 millis  336.42 secs
     sys time   36.65 secs   43.95 millis   36.61 secs

Wallclock time is reduced 5x and CPU time 7x.
2024-08-25 00:47:58 -10:00
Andrea Righi
cf4883fbf8 meson: introduce serialize build option
With commit 5d20f89a ("scheds-rust: build rust schedulers in sequence"),
schedulers are now built serially one after the other to prevent meson
and cargo from forking NxN parallel tasks.

However, this change has made building a single scheduler much more
cumbersome, due to the chain of dependencies.

For example, building scx_rusty using the specific meson target would
still result in all schedulers being built, because they all depend on
each other.

To address this issue, introduce the new meson build option
`serialize=true|false` (default is false).

This option allows to disable the schedulers' build chain, restoring the
old behavior.

With this option enabled, it is now possible to build just a single
scheduler, parallelizing the cargo build properly, without triggering
the build of the others. Example:

  $ meson setup build -Dbuildtype=release -Dserialize=false
  $ meson compile -C build scx_rusty

Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
2024-06-28 10:17:37 +02:00
takase1121
5d20f89a87
scheds-rust: build rust schedulers in sequence 2024-04-23 08:06:27 +08:00
Changwoo Min
6ab3928a0d scx_lavd: add scx_lavd (Latency-criticality Aware Virtual Deadline) scheduler
scx_lavd is a BPF scheduler that implements an LAVD (Latency-criticality
Aware Virtual Deadline) scheduling algorithm. While LAVD is new and
still evolving, its core ideas are 1) measuring how much a task is
latency critical and 2) leveraging the task's latency-criticality
information in making various scheduling decisions (e.g., task's
deadline, time slice, etc.). As the name implies, LAVD is based on the
foundation of deadline scheduling. This scheduler consists of the BPF
part and the rust part. The BPF part makes all the scheduling decisions;
the rust part loads the BPF code and conducts other chores (e.g.,
printing sampled scheduling decisions).
2024-03-16 10:31:07 +09:00