mirror of
https://github.com/sched-ext/scx.git
synced 2024-11-25 04:00:24 +00:00
scx_rustland: use a ring buffer for queued tasks
Switch from a BPF_MAP_TYPE_QUEUE to a BPF_MAP_TYPE_RINGBUF to store the tasks that need to be processed by the user-space scheduler. A ring buffer allows to save a lot of memory copies and syscalls, since the memory is directly shared between the BPF and the user-space components. Performance profile before this change: 2.44% [kernel] [k] __memset 2.19% [kernel] [k] __sys_bpf 1.59% [kernel] [k] __kmem_cache_alloc_node 1.00% [kernel] [k] _copy_from_user After this change: 1.42% [kernel] [k] __memset 0.14% [kernel] [k] __sys_bpf 0.10% [kernel] [k] __kmem_cache_alloc_node 0.07% [kernel] [k] _copy_from_user Both the overhead of sys_bpf() and copy_from_user() are reduced by a factor of ~15x now (only the dispatch path is using sys_bpf() now). NOTE: despite being very effective, the current implementation is a bit of a hack. This is because the present ring buffer API exclusively permits consumption in a greedy manner, where multiple items can be consumed simultaneously. However, libbpf-rs does not provide precise information regarding the exact number of items consumed. By utilizing a more refined libbpf-rs API [1] we may be able to improve this code a bit. Moreover, libbpf-rs doesn't provide an API for the user_ring_buffer, so at the moment there's not a trivial way to apply the same change to the dispatched tasks. However, just with this change applied, the overhead of sys_bpf() and copy_from_user() is already minimal, so we won't get much benefits by changing the dispatch path to use a BPF ring buffer. [1] https://github.com/libbpf/libbpf-rs/pull/680 Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
This commit is contained in:
parent
04685e633f
commit
93dc615653
@ -144,10 +144,10 @@ pub struct QueuedTask {
|
|||||||
// Task queued for dispatching to the BPF component (see bpf_intf::dispatched_task_ctx).
|
// Task queued for dispatching to the BPF component (see bpf_intf::dispatched_task_ctx).
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
pub struct DispatchedTask {
|
pub struct DispatchedTask {
|
||||||
pub pid: i32, // pid that uniquely identifies a task
|
pub pid: i32, // pid that uniquely identifies a task
|
||||||
pub cpu: i32, // target CPU selected by the scheduler
|
pub cpu: i32, // target CPU selected by the scheduler
|
||||||
pub cpumask_cnt: u64, // cpumask generation counter
|
pub cpumask_cnt: u64, // cpumask generation counter
|
||||||
pub payload: u64, // task payload (used for debugging)
|
pub payload: u64, // task payload (used for debugging)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Message received from the dispatcher (see bpf_intf::queued_task_ctx for details).
|
// Message received from the dispatcher (see bpf_intf::queued_task_ctx for details).
|
||||||
@ -205,12 +205,17 @@ impl DispatchedMessage {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub struct BpfScheduler<'a> {
|
pub struct BpfScheduler<'cb> {
|
||||||
pub skel: BpfSkel<'a>, // Low-level BPF connector
|
pub skel: BpfSkel<'cb>, // Low-level BPF connector
|
||||||
|
queued: libbpf_rs::RingBuffer<'cb>, // Ring buffer of queued tasks
|
||||||
struct_ops: Option<libbpf_rs::Link>, // Low-level BPF methods
|
struct_ops: Option<libbpf_rs::Link>, // Low-level BPF methods
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<'a> BpfScheduler<'a> {
|
// Buffer to store a task read from the ring buffer.
|
||||||
|
const BUFSIZE: usize = std::mem::size_of::<QueuedTask>();
|
||||||
|
static mut BUF: [u8; BUFSIZE] = [0; BUFSIZE];
|
||||||
|
|
||||||
|
impl<'cb> BpfScheduler<'cb> {
|
||||||
pub fn init(slice_us: u64, nr_cpus_online: i32, partial: bool, debug: bool) -> Result<Self> {
|
pub fn init(slice_us: u64, nr_cpus_online: i32, partial: bool, debug: bool) -> Result<Self> {
|
||||||
// Open the BPF prog first for verification.
|
// Open the BPF prog first for verification.
|
||||||
let skel_builder = BpfSkelBuilder::default();
|
let skel_builder = BpfSkelBuilder::default();
|
||||||
@ -220,6 +225,26 @@ impl<'a> BpfScheduler<'a> {
|
|||||||
// scheduling.
|
// scheduling.
|
||||||
ALLOCATOR.lock_memory();
|
ALLOCATOR.lock_memory();
|
||||||
|
|
||||||
|
// Copy one item from the ring buffer.
|
||||||
|
fn callback(data: &[u8]) -> i32 {
|
||||||
|
unsafe {
|
||||||
|
BUF.copy_from_slice(data);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Return an unsupported error to stop early and consume only one item.
|
||||||
|
//
|
||||||
|
// NOTE: this is quite a hack. I wish libbpf would honor stopping after the first item
|
||||||
|
// is consumed, upon returnin a non-zero positive value here, but it doesn't seem to be
|
||||||
|
// the case:
|
||||||
|
//
|
||||||
|
// https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/lib/bpf/ringbuf.c?h=v6.8-rc5#n260
|
||||||
|
//
|
||||||
|
// Maybe we should fix this to stop processing items from the ring buffer also when a
|
||||||
|
// value > 0 is returned.
|
||||||
|
//
|
||||||
|
-255
|
||||||
|
}
|
||||||
|
|
||||||
// Initialize online CPUs counter.
|
// Initialize online CPUs counter.
|
||||||
//
|
//
|
||||||
// NOTE: we should probably refresh this counter during the normal execution to support cpu
|
// NOTE: we should probably refresh this counter during the normal execution to support cpu
|
||||||
@ -242,9 +267,21 @@ impl<'a> BpfScheduler<'a> {
|
|||||||
.context("Failed to attach struct ops")?,
|
.context("Failed to attach struct ops")?,
|
||||||
);
|
);
|
||||||
|
|
||||||
|
// Build the ring buffer of queued tasks.
|
||||||
|
let binding = skel.maps();
|
||||||
|
let queued_ring_buffer = binding.queued();
|
||||||
|
let mut rbb = libbpf_rs::RingBufferBuilder::new();
|
||||||
|
rbb.add(queued_ring_buffer, callback)
|
||||||
|
.expect("failed to add ringbuf callback");
|
||||||
|
let queued = rbb.build().expect("failed to build ringbuf");
|
||||||
|
|
||||||
// Make sure to use the SCHED_EXT class at least for the scheduler itself.
|
// Make sure to use the SCHED_EXT class at least for the scheduler itself.
|
||||||
match Self::use_sched_ext() {
|
match Self::use_sched_ext() {
|
||||||
0 => Ok(Self { skel, struct_ops }),
|
0 => Ok(Self {
|
||||||
|
skel,
|
||||||
|
queued,
|
||||||
|
struct_ops,
|
||||||
|
}),
|
||||||
err => Err(anyhow::Error::msg(format!(
|
err => Err(anyhow::Error::msg(format!(
|
||||||
"sched_setscheduler error: {}",
|
"sched_setscheduler error: {}",
|
||||||
err
|
err
|
||||||
@ -337,16 +374,14 @@ impl<'a> BpfScheduler<'a> {
|
|||||||
//
|
//
|
||||||
// NOTE: if task.cpu is negative the task is exiting and it does not require to be scheduled.
|
// NOTE: if task.cpu is negative the task is exiting and it does not require to be scheduled.
|
||||||
pub fn dequeue_task(&mut self) -> Result<Option<QueuedTask>, libbpf_rs::Error> {
|
pub fn dequeue_task(&mut self) -> Result<Option<QueuedTask>, libbpf_rs::Error> {
|
||||||
let maps = self.skel.maps();
|
match self.queued.consume() {
|
||||||
let queued = maps.queued();
|
Ok(()) => Ok(None),
|
||||||
|
Err(error) if error.kind() == libbpf_rs::ErrorKind::Other => {
|
||||||
match queued.lookup_and_delete(&[]) {
|
// A valid task is received, convert data to a proper task struct.
|
||||||
Ok(Some(msg)) => {
|
let task = unsafe { EnqueuedMessage::from_bytes(&BUF).to_queued_task() };
|
||||||
let task = EnqueuedMessage::from_bytes(msg.as_slice()).to_queued_task();
|
|
||||||
Ok(Some(task))
|
Ok(Some(task))
|
||||||
}
|
}
|
||||||
Ok(None) => Ok(None),
|
Err(error) => Err(error),
|
||||||
Err(err) => Err(err),
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -119,8 +119,7 @@ const volatile bool debug;
|
|||||||
* This map is drained by the user space scheduler.
|
* This map is drained by the user space scheduler.
|
||||||
*/
|
*/
|
||||||
struct {
|
struct {
|
||||||
__uint(type, BPF_MAP_TYPE_QUEUE);
|
__uint(type, BPF_MAP_TYPE_RINGBUF);
|
||||||
__type(value, struct queued_task_ctx);
|
|
||||||
__uint(max_entries, MAX_ENQUEUED_TASKS);
|
__uint(max_entries, MAX_ENQUEUED_TASKS);
|
||||||
} queued SEC(".maps");
|
} queued SEC(".maps");
|
||||||
|
|
||||||
@ -157,11 +156,11 @@ struct {
|
|||||||
} task_ctx_stor SEC(".maps");
|
} task_ctx_stor SEC(".maps");
|
||||||
|
|
||||||
/* Return a local task context from a generic task */
|
/* Return a local task context from a generic task */
|
||||||
struct task_ctx *lookup_task_ctx(struct task_struct *p)
|
struct task_ctx *lookup_task_ctx(const struct task_struct *p)
|
||||||
{
|
{
|
||||||
struct task_ctx *tctx;
|
struct task_ctx *tctx;
|
||||||
|
|
||||||
tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0);
|
tctx = bpf_task_storage_get(&task_ctx_stor, (struct task_struct *)p, 0, 0);
|
||||||
if (!tctx) {
|
if (!tctx) {
|
||||||
scx_bpf_error("Failed to lookup task ctx for %s", p->comm);
|
scx_bpf_error("Failed to lookup task ctx for %s", p->comm);
|
||||||
return NULL;
|
return NULL;
|
||||||
@ -495,7 +494,7 @@ static void sched_congested(struct task_struct *p)
|
|||||||
*/
|
*/
|
||||||
void BPF_STRUCT_OPS(rustland_enqueue, struct task_struct *p, u64 enq_flags)
|
void BPF_STRUCT_OPS(rustland_enqueue, struct task_struct *p, u64 enq_flags)
|
||||||
{
|
{
|
||||||
struct queued_task_ctx task;
|
struct queued_task_ctx *task;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Scheduler is dispatched directly in .dispatch() when needed, so
|
* Scheduler is dispatched directly in .dispatch() when needed, so
|
||||||
@ -523,17 +522,20 @@ void BPF_STRUCT_OPS(rustland_enqueue, struct task_struct *p, u64 enq_flags)
|
|||||||
* user-space scheduler.
|
* user-space scheduler.
|
||||||
*
|
*
|
||||||
* If @queued list is full (user-space scheduler is congested) tasks
|
* If @queued list is full (user-space scheduler is congested) tasks
|
||||||
* will be dispatched directly from the kernel (re-using their
|
* will be dispatched directly from the kernel (using the first CPU
|
||||||
* previously used CPU in this case).
|
* available in this case).
|
||||||
*/
|
*/
|
||||||
get_task_info(&task, p, false);
|
task = bpf_ringbuf_reserve(&queued, sizeof(*task), 0);
|
||||||
dbg_msg("enqueue: pid=%d (%s)", p->pid, p->comm);
|
if (!task) {
|
||||||
if (bpf_map_push_elem(&queued, &task, 0)) {
|
|
||||||
sched_congested(p);
|
sched_congested(p);
|
||||||
dispatch_task(p, SHARED_DSQ, 0, enq_flags);
|
dispatch_task(p, SHARED_DSQ, 0, enq_flags);
|
||||||
__sync_fetch_and_add(&nr_kernel_dispatches, 1);
|
__sync_fetch_and_add(&nr_kernel_dispatches, 1);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
get_task_info(task, p, false);
|
||||||
|
dbg_msg("enqueue: pid=%d (%s)", p->pid, p->comm);
|
||||||
|
bpf_ringbuf_submit(task, 0);
|
||||||
|
|
||||||
__sync_fetch_and_add(&nr_queued, 1);
|
__sync_fetch_and_add(&nr_queued, 1);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -736,11 +738,11 @@ s32 BPF_STRUCT_OPS(rustland_init_task, struct task_struct *p,
|
|||||||
void BPF_STRUCT_OPS(rustland_exit_task, struct task_struct *p,
|
void BPF_STRUCT_OPS(rustland_exit_task, struct task_struct *p,
|
||||||
struct scx_exit_task_args *args)
|
struct scx_exit_task_args *args)
|
||||||
{
|
{
|
||||||
struct queued_task_ctx task = {};
|
struct queued_task_ctx *task;
|
||||||
|
|
||||||
dbg_msg("exit: pid=%d (%s)", p->pid, p->comm);
|
dbg_msg("exit: pid=%d (%s)", p->pid, p->comm);
|
||||||
get_task_info(&task, p, true);
|
task = bpf_ringbuf_reserve(&queued, sizeof(*task), 0);
|
||||||
if (bpf_map_push_elem(&queued, &task, 0)) {
|
if (!task) {
|
||||||
/*
|
/*
|
||||||
* We may have a memory leak in the scheduler at this point,
|
* We may have a memory leak in the scheduler at this point,
|
||||||
* because we failed to notify it about this exiting task and
|
* because we failed to notify it about this exiting task and
|
||||||
@ -755,6 +757,9 @@ void BPF_STRUCT_OPS(rustland_exit_task, struct task_struct *p,
|
|||||||
sched_congested(p);
|
sched_congested(p);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
get_task_info(task, p, true);
|
||||||
|
bpf_ringbuf_submit(task, 0);
|
||||||
|
|
||||||
__sync_fetch_and_add(&nr_queued, 1);
|
__sync_fetch_and_add(&nr_queued, 1);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -471,7 +471,7 @@ impl<'a> Scheduler<'a> {
|
|||||||
// Dynamically adjust the time slice based on the amount of waiting tasks.
|
// Dynamically adjust the time slice based on the amount of waiting tasks.
|
||||||
fn scale_slice_ns(&mut self) {
|
fn scale_slice_ns(&mut self) {
|
||||||
let nr_scheduled = self.task_pool.tasks.len() as u64;
|
let nr_scheduled = self.task_pool.tasks.len() as u64;
|
||||||
let slice_us_max = self.slice_ns / MSEC_PER_SEC;
|
let slice_us_max = self.slice_ns / NSEC_PER_USEC;
|
||||||
|
|
||||||
// Scale time slice as a function of nr_scheduled, but never scale below 250 us.
|
// Scale time slice as a function of nr_scheduled, but never scale below 250 us.
|
||||||
let scaling = ((nr_scheduled + 1) / 2).max(1);
|
let scaling = ((nr_scheduled + 1) / 2).max(1);
|
||||||
|
Loading…
Reference in New Issue
Block a user