Summary:
We have a good type representation in the Type Graph of an incomplete type and
the underlying type that represents. However, this incomplete type still ends
up in the generated code as `void` which loses information. For example, a
container that can't contain void may fail to compile because it was
initialised with `void` but really its because the type it was supposed to be
initialised with (say, `Foo`) had incomplete debug information.
This change identifies that a type is incomplete in the output by generating it
as an incomplete type `struct Incomplete<struct Foo>`. This allows us to name
the type correctly in the TreeBuilder output and filter for incomplete types,
as well as getting appropriate compiler errors if it mustn't be incomplete.
Test Plan:
- CI
- Added a unit test to namegen.
- Enabled and added an extra pointers_incomplete test.
This change is tricky to test because it isn't really user visible. The types
still use their `inputName` which is unchanged in any successful output - this
change is used so the compiler fails with a more detailed error.
We previously moved container identification later in CodeGen in order
to preserve information for AlignmentCalc.
However, Flattener needs to know if a class is a container in order to
apply its special handling for this case.
This new approach moves container identification in front of Flattener,
but has Container own a type node, representing its layout. This
underlying type node can be used for calculating a container's
alignment in a later pass.
Types within containers were previously named TODO. This sorts it out so
they're named as their most resolved type. The current implementation
skips Typedef names.
Type Graph deduplicates and modifies names to better fit the generated
code, for example `int32_t[4]` becomes `OIArray<int32_t, 4>` and `struct
MyStruct` might become `struct MyStruct_0`.
Add an `inputName` which better represents the original input code which
can be used when building the tree.
CodeGen v1 does not record anything for pointers to incomplete types.
Not even the address, as is done for other pointers.
Introduce a new Primitive type "Incomplete". This behaves identically to
"Void", but allows us to tell whether a type was defined as void or if
it ended up like that because of incomplete DWARF information.
Containers store references to ContainerInfos, so the ContainerInfos
must live beyond the stack they were created on. Use static variables
for simplicity.
We can catch these exceptions and print clearer failure messages.
Before:
unknown file: Failure
C++ exception with description "Invalid type for child" thrown in the test body.
After:
../test/type_graph_utils.cpp:44: Failure
Failed
Error parsing input graph: Invalid type for child
TypeGraphParser parses a textual type graph, as emitted by Printer.
It also doubles as a way of ensuring that Printer displays all
information about a type graph, to aid with debugging.
Convert Flattener unit tests over to this new framework as a first step.