460 lines
18 KiB
Nix
460 lines
18 KiB
Nix
# Define the list of system with their properties.
|
||
#
|
||
# See https://clang.llvm.org/docs/CrossCompilation.html and
|
||
# http://llvm.org/docs/doxygen/html/Triple_8cpp_source.html especially
|
||
# Triple::normalize. Parsing should essentially act as a more conservative
|
||
# version of that last function.
|
||
#
|
||
# Most of the types below come in "open" and "closed" pairs. The open ones
|
||
# specify what information we need to know about systems in general, and the
|
||
# closed ones are sub-types representing the whitelist of systems we support in
|
||
# practice.
|
||
#
|
||
# Code in the remainder of nixpkgs shouldn't rely on the closed ones in
|
||
# e.g. exhaustive cases. Its more a sanity check to make sure nobody defines
|
||
# systems that overlap with existing ones and won't notice something amiss.
|
||
#
|
||
{ lib }:
|
||
with lib.lists;
|
||
with lib.types;
|
||
with lib.attrsets;
|
||
with lib.strings;
|
||
with (import ./inspect.nix { inherit lib; }).predicates;
|
||
|
||
let
|
||
inherit (lib.options) mergeOneOption;
|
||
|
||
setTypes = type:
|
||
mapAttrs (name: value:
|
||
assert type.check value;
|
||
setType type.name ({ inherit name; } // value));
|
||
|
||
in
|
||
|
||
rec {
|
||
|
||
################################################################################
|
||
|
||
types.openSignificantByte = mkOptionType {
|
||
name = "significant-byte";
|
||
description = "Endianness";
|
||
merge = mergeOneOption;
|
||
};
|
||
|
||
types.significantByte = enum (attrValues significantBytes);
|
||
|
||
significantBytes = setTypes types.openSignificantByte {
|
||
bigEndian = {};
|
||
littleEndian = {};
|
||
};
|
||
|
||
################################################################################
|
||
|
||
# Reasonable power of 2
|
||
types.bitWidth = enum [ 8 16 32 64 128 ];
|
||
|
||
################################################################################
|
||
|
||
types.openCpuType = mkOptionType {
|
||
name = "cpu-type";
|
||
description = "instruction set architecture name and information";
|
||
merge = mergeOneOption;
|
||
check = x: types.bitWidth.check x.bits
|
||
&& (if 8 < x.bits
|
||
then types.significantByte.check x.significantByte
|
||
else !(x ? significantByte));
|
||
};
|
||
|
||
types.cpuType = enum (attrValues cpuTypes);
|
||
|
||
cpuTypes = with significantBytes; setTypes types.openCpuType {
|
||
arm = { bits = 32; significantByte = littleEndian; family = "arm"; };
|
||
armv5tel = { bits = 32; significantByte = littleEndian; family = "arm"; version = "5"; arch = "armv5t"; };
|
||
armv6m = { bits = 32; significantByte = littleEndian; family = "arm"; version = "6"; arch = "armv6-m"; };
|
||
armv6l = { bits = 32; significantByte = littleEndian; family = "arm"; version = "6"; arch = "armv6"; };
|
||
armv7a = { bits = 32; significantByte = littleEndian; family = "arm"; version = "7"; arch = "armv7-a"; };
|
||
armv7r = { bits = 32; significantByte = littleEndian; family = "arm"; version = "7"; arch = "armv7-r"; };
|
||
armv7m = { bits = 32; significantByte = littleEndian; family = "arm"; version = "7"; arch = "armv7-m"; };
|
||
armv7l = { bits = 32; significantByte = littleEndian; family = "arm"; version = "7"; arch = "armv7"; };
|
||
armv8a = { bits = 32; significantByte = littleEndian; family = "arm"; version = "8"; arch = "armv8-a"; };
|
||
armv8r = { bits = 32; significantByte = littleEndian; family = "arm"; version = "8"; arch = "armv8-a"; };
|
||
armv8m = { bits = 32; significantByte = littleEndian; family = "arm"; version = "8"; arch = "armv8-m"; };
|
||
aarch64 = { bits = 64; significantByte = littleEndian; family = "arm"; version = "8"; arch = "armv8-a"; };
|
||
aarch64_be = { bits = 64; significantByte = bigEndian; family = "arm"; version = "8"; arch = "armv8-a"; };
|
||
|
||
i386 = { bits = 32; significantByte = littleEndian; family = "x86"; arch = "i386"; };
|
||
i486 = { bits = 32; significantByte = littleEndian; family = "x86"; arch = "i486"; };
|
||
i586 = { bits = 32; significantByte = littleEndian; family = "x86"; arch = "i586"; };
|
||
i686 = { bits = 32; significantByte = littleEndian; family = "x86"; arch = "i686"; };
|
||
x86_64 = { bits = 64; significantByte = littleEndian; family = "x86"; arch = "x86-64"; };
|
||
|
||
mips = { bits = 32; significantByte = bigEndian; family = "mips"; };
|
||
mipsel = { bits = 32; significantByte = littleEndian; family = "mips"; };
|
||
mips64 = { bits = 64; significantByte = bigEndian; family = "mips"; };
|
||
mips64el = { bits = 64; significantByte = littleEndian; family = "mips"; };
|
||
|
||
powerpc = { bits = 32; significantByte = bigEndian; family = "power"; };
|
||
powerpc64 = { bits = 64; significantByte = bigEndian; family = "power"; };
|
||
powerpc64le = { bits = 64; significantByte = littleEndian; family = "power"; };
|
||
powerpcle = { bits = 32; significantByte = littleEndian; family = "power"; };
|
||
|
||
riscv32 = { bits = 32; significantByte = littleEndian; family = "riscv"; };
|
||
riscv64 = { bits = 64; significantByte = littleEndian; family = "riscv"; };
|
||
|
||
sparc = { bits = 32; significantByte = bigEndian; family = "sparc"; };
|
||
sparc64 = { bits = 64; significantByte = bigEndian; family = "sparc"; };
|
||
|
||
wasm32 = { bits = 32; significantByte = littleEndian; family = "wasm"; };
|
||
wasm64 = { bits = 64; significantByte = littleEndian; family = "wasm"; };
|
||
|
||
alpha = { bits = 64; significantByte = littleEndian; family = "alpha"; };
|
||
|
||
msp430 = { bits = 16; significantByte = littleEndian; family = "msp430"; };
|
||
avr = { bits = 8; family = "avr"; };
|
||
|
||
vc4 = { bits = 32; significantByte = littleEndian; family = "vc4"; };
|
||
|
||
js = { bits = 32; significantByte = littleEndian; family = "js"; };
|
||
};
|
||
|
||
# Determine where two CPUs are compatible with each other. That is,
|
||
# can we run code built for system b on system a? For that to
|
||
# happen, then the set of all possible possible programs that system
|
||
# b accepts must be a subset of the set of all programs that system
|
||
# a accepts. This compatibility relation forms a category where each
|
||
# CPU is an object and each arrow from a to b represents
|
||
# compatibility. CPUs with multiple modes of Endianness are
|
||
# isomorphic while all CPUs are endomorphic because any program
|
||
# built for a CPU can run on that CPU.
|
||
isCompatible = a: b: with cpuTypes; lib.any lib.id [
|
||
# x86
|
||
(b == i386 && isCompatible a i486)
|
||
(b == i486 && isCompatible a i586)
|
||
(b == i586 && isCompatible a i686)
|
||
|
||
# XXX: Not true in some cases. Like in WSL mode.
|
||
(b == i686 && isCompatible a x86_64)
|
||
|
||
# ARMv4
|
||
(b == arm && isCompatible a armv5tel)
|
||
|
||
# ARMv5
|
||
(b == armv5tel && isCompatible a armv6l)
|
||
|
||
# ARMv6
|
||
(b == armv6l && isCompatible a armv6m)
|
||
(b == armv6m && isCompatible a armv7l)
|
||
|
||
# ARMv7
|
||
(b == armv7l && isCompatible a armv7a)
|
||
(b == armv7l && isCompatible a armv7r)
|
||
(b == armv7l && isCompatible a armv7m)
|
||
(b == armv7a && isCompatible a armv8a)
|
||
(b == armv7r && isCompatible a armv8a)
|
||
(b == armv7m && isCompatible a armv8a)
|
||
(b == armv7a && isCompatible a armv8r)
|
||
(b == armv7r && isCompatible a armv8r)
|
||
(b == armv7m && isCompatible a armv8r)
|
||
(b == armv7a && isCompatible a armv8m)
|
||
(b == armv7r && isCompatible a armv8m)
|
||
(b == armv7m && isCompatible a armv8m)
|
||
|
||
# ARMv8
|
||
(b == armv8r && isCompatible a armv8a)
|
||
(b == armv8m && isCompatible a armv8a)
|
||
|
||
# XXX: not always true! Some arm64 cpus don’t support arm32 mode.
|
||
(b == aarch64 && a == armv8a)
|
||
(b == armv8a && isCompatible a aarch64)
|
||
|
||
(b == aarch64 && a == aarch64_be)
|
||
(b == aarch64_be && isCompatible a aarch64)
|
||
|
||
# PowerPC
|
||
(b == powerpc && isCompatible a powerpc64)
|
||
(b == powerpcle && isCompatible a powerpc)
|
||
(b == powerpc && a == powerpcle)
|
||
(b == powerpc64le && isCompatible a powerpc64)
|
||
(b == powerpc64 && a == powerpc64le)
|
||
|
||
# MIPS
|
||
(b == mips && isCompatible a mips64)
|
||
(b == mips && a == mipsel)
|
||
(b == mipsel && isCompatible a mips)
|
||
(b == mips64 && a == mips64el)
|
||
(b == mips64el && isCompatible a mips64)
|
||
|
||
# RISCV
|
||
(b == riscv32 && isCompatible a riscv64)
|
||
|
||
# SPARC
|
||
(b == sparc && isCompatible a sparc64)
|
||
|
||
# WASM
|
||
(b == wasm32 && isCompatible a wasm64)
|
||
|
||
# identity
|
||
(b == a)
|
||
];
|
||
|
||
################################################################################
|
||
|
||
types.openVendor = mkOptionType {
|
||
name = "vendor";
|
||
description = "vendor for the platform";
|
||
merge = mergeOneOption;
|
||
};
|
||
|
||
types.vendor = enum (attrValues vendors);
|
||
|
||
vendors = setTypes types.openVendor {
|
||
apple = {};
|
||
pc = {};
|
||
# Actually matters, unlocking some MinGW-w64-specific options in GCC. See
|
||
# bottom of https://sourceforge.net/p/mingw-w64/wiki2/Unicode%20apps/
|
||
w64 = {};
|
||
|
||
none = {};
|
||
unknown = {};
|
||
};
|
||
|
||
################################################################################
|
||
|
||
types.openExecFormat = mkOptionType {
|
||
name = "exec-format";
|
||
description = "executable container used by the kernel";
|
||
merge = mergeOneOption;
|
||
};
|
||
|
||
types.execFormat = enum (attrValues execFormats);
|
||
|
||
execFormats = setTypes types.openExecFormat {
|
||
aout = {}; # a.out
|
||
elf = {};
|
||
macho = {};
|
||
pe = {};
|
||
wasm = {};
|
||
|
||
unknown = {};
|
||
};
|
||
|
||
################################################################################
|
||
|
||
types.openKernelFamily = mkOptionType {
|
||
name = "exec-format";
|
||
description = "executable container used by the kernel";
|
||
merge = mergeOneOption;
|
||
};
|
||
|
||
types.kernelFamily = enum (attrValues kernelFamilies);
|
||
|
||
kernelFamilies = setTypes types.openKernelFamily {
|
||
bsd = {};
|
||
darwin = {};
|
||
};
|
||
|
||
################################################################################
|
||
|
||
types.openKernel = mkOptionType {
|
||
name = "kernel";
|
||
description = "kernel name and information";
|
||
merge = mergeOneOption;
|
||
check = x: types.execFormat.check x.execFormat
|
||
&& all types.kernelFamily.check (attrValues x.families);
|
||
};
|
||
|
||
types.kernel = enum (attrValues kernels);
|
||
|
||
kernels = with execFormats; with kernelFamilies; setTypes types.openKernel {
|
||
# TODO(@Ericson2314): Don't want to mass-rebuild yet to keeping 'darwin' as
|
||
# the nnormalized name for macOS.
|
||
macos = { execFormat = macho; families = { inherit darwin; }; name = "darwin"; };
|
||
ios = { execFormat = macho; families = { inherit darwin; }; };
|
||
freebsd = { execFormat = elf; families = { inherit bsd; }; };
|
||
linux = { execFormat = elf; families = { }; };
|
||
netbsd = { execFormat = elf; families = { inherit bsd; }; };
|
||
none = { execFormat = unknown; families = { }; };
|
||
openbsd = { execFormat = elf; families = { inherit bsd; }; };
|
||
solaris = { execFormat = elf; families = { }; };
|
||
wasi = { execFormat = wasm; families = { }; };
|
||
redox = { execFormat = elf; families = { }; };
|
||
windows = { execFormat = pe; families = { }; };
|
||
ghcjs = { execFormat = unknown; families = { }; };
|
||
genode = { execFormat = elf; families = { }; };
|
||
} // { # aliases
|
||
# 'darwin' is the kernel for all of them. We choose macOS by default.
|
||
darwin = kernels.macos;
|
||
watchos = kernels.ios;
|
||
tvos = kernels.ios;
|
||
win32 = kernels.windows;
|
||
};
|
||
|
||
################################################################################
|
||
|
||
types.openAbi = mkOptionType {
|
||
name = "abi";
|
||
description = "binary interface for compiled code and syscalls";
|
||
merge = mergeOneOption;
|
||
};
|
||
|
||
types.abi = enum (attrValues abis);
|
||
|
||
abis = setTypes types.openAbi {
|
||
cygnus = {};
|
||
msvc = {};
|
||
|
||
# Note: eabi is specific to ARM and PowerPC.
|
||
# On PowerPC, this corresponds to PPCEABI.
|
||
# On ARM, this corresponds to ARMEABI.
|
||
eabi = { float = "soft"; };
|
||
eabihf = { float = "hard"; };
|
||
|
||
# Other architectures should use ELF in embedded situations.
|
||
elf = {};
|
||
|
||
androideabi = {};
|
||
android = {
|
||
assertions = [
|
||
{ assertion = platform: !platform.isAarch32;
|
||
message = ''
|
||
The "android" ABI is not for 32-bit ARM. Use "androideabi" instead.
|
||
'';
|
||
}
|
||
];
|
||
};
|
||
|
||
gnueabi = { float = "soft"; };
|
||
gnueabihf = { float = "hard"; };
|
||
gnu = {
|
||
assertions = [
|
||
{ assertion = platform: !platform.isAarch32;
|
||
message = ''
|
||
The "gnu" ABI is ambiguous on 32-bit ARM. Use "gnueabi" or "gnueabihf" instead.
|
||
'';
|
||
}
|
||
];
|
||
};
|
||
gnuabi64 = { abi = "64"; };
|
||
|
||
musleabi = { float = "soft"; };
|
||
musleabihf = { float = "hard"; };
|
||
musl = {};
|
||
|
||
uclibceabihf = { float = "soft"; };
|
||
uclibceabi = { float = "hard"; };
|
||
uclibc = {};
|
||
|
||
unknown = {};
|
||
};
|
||
|
||
################################################################################
|
||
|
||
types.parsedPlatform = mkOptionType {
|
||
name = "system";
|
||
description = "fully parsed representation of llvm- or nix-style platform tuple";
|
||
merge = mergeOneOption;
|
||
check = { cpu, vendor, kernel, abi }:
|
||
types.cpuType.check cpu
|
||
&& types.vendor.check vendor
|
||
&& types.kernel.check kernel
|
||
&& types.abi.check abi;
|
||
};
|
||
|
||
isSystem = isType "system";
|
||
|
||
mkSystem = components:
|
||
assert types.parsedPlatform.check components;
|
||
setType "system" components;
|
||
|
||
mkSkeletonFromList = l: {
|
||
"1" = if elemAt l 0 == "avr"
|
||
then { cpu = elemAt l 0; kernel = "none"; abi = "unknown"; }
|
||
else throw "Target specification with 1 components is ambiguous";
|
||
"2" = # We only do 2-part hacks for things Nix already supports
|
||
if elemAt l 1 == "cygwin"
|
||
then { cpu = elemAt l 0; kernel = "windows"; abi = "cygnus"; }
|
||
# MSVC ought to be the default ABI so this case isn't needed. But then it
|
||
# becomes difficult to handle the gnu* variants for Aarch32 correctly for
|
||
# minGW. So it's easier to make gnu* the default for the MinGW, but
|
||
# hack-in MSVC for the non-MinGW case right here.
|
||
else if elemAt l 1 == "windows"
|
||
then { cpu = elemAt l 0; kernel = "windows"; abi = "msvc"; }
|
||
else if (elemAt l 1) == "elf"
|
||
then { cpu = elemAt l 0; vendor = "unknown"; kernel = "none"; abi = elemAt l 1; }
|
||
else { cpu = elemAt l 0; kernel = elemAt l 1; };
|
||
"3" = # Awkwards hacks, beware!
|
||
if elemAt l 1 == "apple"
|
||
then { cpu = elemAt l 0; vendor = "apple"; kernel = elemAt l 2; }
|
||
else if (elemAt l 1 == "linux") || (elemAt l 2 == "gnu")
|
||
then { cpu = elemAt l 0; kernel = elemAt l 1; abi = elemAt l 2; }
|
||
else if (elemAt l 2 == "mingw32") # autotools breaks on -gnu for window
|
||
then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = "windows"; }
|
||
else if (elemAt l 2 == "wasi")
|
||
then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = "wasi"; }
|
||
else if (elemAt l 2 == "redox")
|
||
then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = "redox"; }
|
||
else if hasPrefix "netbsd" (elemAt l 2)
|
||
then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = elemAt l 2; }
|
||
else if (elem (elemAt l 2) ["eabi" "eabihf" "elf"])
|
||
then { cpu = elemAt l 0; vendor = "unknown"; kernel = elemAt l 1; abi = elemAt l 2; }
|
||
else if (elemAt l 2 == "ghcjs")
|
||
then { cpu = elemAt l 0; vendor = "unknown"; kernel = elemAt l 2; }
|
||
else if hasPrefix "genode" (elemAt l 2)
|
||
then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = elemAt l 2; }
|
||
else throw "Target specification with 3 components is ambiguous";
|
||
"4" = { cpu = elemAt l 0; vendor = elemAt l 1; kernel = elemAt l 2; abi = elemAt l 3; };
|
||
}.${toString (length l)}
|
||
or (throw "system string has invalid number of hyphen-separated components");
|
||
|
||
# This should revert the job done by config.guess from the gcc compiler.
|
||
mkSystemFromSkeleton = { cpu
|
||
, # Optional, but fallback too complex for here.
|
||
# Inferred below instead.
|
||
vendor ? assert false; null
|
||
, kernel
|
||
, # Also inferred below
|
||
abi ? assert false; null
|
||
} @ args: let
|
||
getCpu = name: cpuTypes.${name} or (throw "Unknown CPU type: ${name}");
|
||
getVendor = name: vendors.${name} or (throw "Unknown vendor: ${name}");
|
||
getKernel = name: kernels.${name} or (throw "Unknown kernel: ${name}");
|
||
getAbi = name: abis.${name} or (throw "Unknown ABI: ${name}");
|
||
|
||
parsed = {
|
||
cpu = getCpu args.cpu;
|
||
vendor =
|
||
/**/ if args ? vendor then getVendor args.vendor
|
||
else if isDarwin parsed then vendors.apple
|
||
else if isWindows parsed then vendors.pc
|
||
else vendors.unknown;
|
||
kernel = if hasPrefix "darwin" args.kernel then getKernel "darwin"
|
||
else if hasPrefix "netbsd" args.kernel then getKernel "netbsd"
|
||
else getKernel args.kernel;
|
||
abi =
|
||
/**/ if args ? abi then getAbi args.abi
|
||
else if isLinux parsed || isWindows parsed then
|
||
if isAarch32 parsed then
|
||
if lib.versionAtLeast (parsed.cpu.version or "0") "6"
|
||
then abis.gnueabihf
|
||
else abis.gnueabi
|
||
else abis.gnu
|
||
else abis.unknown;
|
||
};
|
||
|
||
in mkSystem parsed;
|
||
|
||
mkSystemFromString = s: mkSystemFromSkeleton (mkSkeletonFromList (lib.splitString "-" s));
|
||
|
||
doubleFromSystem = { cpu, kernel, abi, ... }:
|
||
/**/ if abi == abis.cygnus then "${cpu.name}-cygwin"
|
||
else if kernel.families ? darwin then "${cpu.name}-darwin"
|
||
else "${cpu.name}-${kernel.name}";
|
||
|
||
tripleFromSystem = { cpu, vendor, kernel, abi, ... } @ sys: assert isSystem sys; let
|
||
optAbi = lib.optionalString (abi != abis.unknown) "-${abi.name}";
|
||
in "${cpu.name}-${vendor.name}-${kernel.name}${optAbi}";
|
||
|
||
################################################################################
|
||
|
||
}
|