nixpkgs/boot/boot-stage-1.nix
2009-05-07 04:24:45 +00:00

200 lines
6.9 KiB
Nix

# This Nix expression builds the initial ramdisk, which contains an
# init script that performs the first stage of booting the system: it
# loads the modules necessary to mount the root file system, then
# calls the init in the root file system to start the second boot
# stage.
{ pkgs, config, kernelPackages, modulesTree }:
rec {
# Determine the set of modules that we need to mount the root FS.
modulesClosure = pkgs.makeModulesClosure {
rootModules =
config.boot.initrd.extraKernelModules ++
config.boot.initrd.kernelModules;
kernel = modulesTree;
allowMissing = config.boot.initrd.allowMissing;
};
# Some additional utilities needed in stage 1, like mount, lvm, fsck
# etc. We don't want to bring in all of those packages, so we just
# copy what we need. Instead of using statically linked binaries,
# we just copy what we need from Glibc and use patchelf to make it
# work.
extraUtils = pkgs.runCommand "extra-utils"
{ buildInputs = [pkgs.nukeReferences];
devicemapper = if config.boot.initrd.lvm then pkgs.devicemapper else null;
lvm2 = if config.boot.initrd.lvm then pkgs.lvm2 else null;
allowedReferences = ["out"]; # prevent accidents like glibc being included in the initrd
}
''
ensureDir $out/bin
ensureDir $out/lib
# Copy what we need from Glibc.
cp -p ${pkgs.glibc}/lib/ld-linux*.so.2 $out/lib
cp -p ${pkgs.glibc}/lib/libc.so.* $out/lib
cp -p ${pkgs.glibc}/lib/libpthread.so.* $out/lib
cp -p ${pkgs.glibc}/lib/librt.so.* $out/lib
cp -p ${pkgs.glibc}/lib/libdl.so.* $out/lib
# Copy some utillinux stuff.
cp ${pkgs.utillinux}/bin/mount ${pkgs.utillinux}/bin/umount ${pkgs.utillinux}/sbin/pivot_root $out/bin
# Copy e2fsck and friends.
cp ${pkgs.e2fsprogs}/sbin/e2fsck $out/bin
cp ${pkgs.e2fsprogs}/sbin/tune2fs $out/bin
cp ${pkgs.e2fsprogs}/sbin/fsck $out/bin
cp ${pkgs.reiserfsprogs}/sbin/reiserfsck $out/bin
ln -s e2fsck $out/bin/fsck.ext2
ln -s e2fsck $out/bin/fsck.ext3
ln -s e2fsck $out/bin/fsck.ext4
ln -s reiserfsck $out/bin/fsck.reiserfs
cp -pd ${pkgs.e2fsprogs}/lib/lib*.so.* $out/lib
# Copy devicemapper and lvm, if we need it.
if test -n "$devicemapper"; then
cp $devicemapper/sbin/dmsetup $out/bin/dmsetup
cp $devicemapper/lib/libdevmapper.so.*.* $out/lib
cp $lvm2/sbin/lvm $out/bin/lvm
fi
# Add RAID mdadm tool.
cp ${pkgs.mdadm}/sbin/mdadm $out/bin/mdadm
# Copy udev.
cp ${pkgs.udev}/sbin/udevd ${pkgs.udev}/sbin/udevadm $out/bin
cp ${pkgs.udev}/lib/udev/*_id $out/bin
cp ${pkgs.udev}/lib/libvolume_id.so.* $out/lib
# Copy bash.
cp ${pkgs.bash}/bin/bash $out/bin
ln -s bash $out/bin/sh
# Run patchelf to make the programs refer to the copied libraries.
for i in $out/bin/* $out/lib/*; do if ! test -L $i; then nuke-refs $i; fi; done
for i in $out/bin/*; do
if ! test -L $i; then
echo "patching $i..."
patchelf --set-interpreter $out/lib/ld-linux*.so.2 --set-rpath $out/lib $i || true
fi
done
# Make sure that the patchelf'ed binaries still work.
echo "testing patched programs..."
$out/bin/bash --version
export LD_LIBRARY_PATH=$out/lib
$out/bin/mount --version
$out/bin/umount --version
$out/bin/e2fsck -V
$out/bin/tune2fs 2> /dev/null | grep "tune2fs "
$out/bin/fsck -N
$out/bin/udevadm --version
$out/bin/vol_id 2>&1 | grep "no device"
if test -n "$devicemapper"; then
$out/bin/dmsetup --version | grep "version:"
LVM_SYSTEM_DIR=$out $out/bin/lvm 2>&1 | grep "LVM"
fi
$out/bin/reiserfsck -V
$out/bin/mdadm --version
''; # */
# The initrd only has to mount / or any FS marked as necessary for
# booting (such as the FS containing /nix/store, or an FS needed for
# mounting /, like / on a loopback).
fileSystems = pkgs.lib.filter
(fs: fs.mountPoint == "/" || (fs ? neededForBoot && fs.neededForBoot))
config.fileSystems;
udevRules = pkgs.stdenv.mkDerivation {
name = "udev-rules";
buildCommand = ''
ensureDir $out
cp ${pkgs.udev}/*/udev/rules.d/60-persistent-storage.rules $out/
substituteInPlace $out/60-persistent-storage.rules \
--replace ata_id ${extraUtils}/bin/ata_id \
--replace usb_id ${extraUtils}/bin/usb_id \
--replace scsi_id ${extraUtils}/bin/scsi_id \
--replace path_id ${extraUtils}/bin/path_id \
--replace vol_id ${extraUtils}/bin/vol_id
sed -e '/^ENV[{]DEVTYPE[}]=="disk", .*GOTO/d' -i $out/60-persistent-storage.rules
''; # */
};
# The udev configuration file for in the initrd.
udevConf = pkgs.writeText "udev-initrd.conf" ''
udev_rules="${udevRules}"
#udev_log="debug"
'';
# The init script of boot stage 1 (loading kernel modules for
# mounting the root FS).
bootStage1 = pkgs.substituteAll {
src = ./boot-stage-1-init.sh;
shell = "${extraUtils}/bin/bash";
isExecutable = true;
inherit modulesClosure udevConf extraUtils;
inherit (config.boot) isLiveCD resumeDevice;
# !!! copy&pasted from upstart-jobs/filesystems.nix.
mountPoints =
if fileSystems == []
then abort "You must specify the fileSystems option!"
else map (fs: fs.mountPoint) fileSystems;
devices = map (fs: if fs ? device then fs.device else "/dev/disk/by-label/${fs.label}") fileSystems;
fsTypes = map (fs: if fs ? fsType then fs.fsType else "auto") fileSystems;
optionss = map (fs: if fs ? options then fs.options else "defaults") fileSystems;
path = [
# `extraUtils' comes first because it overrides the `mount'
# command provided by klibc (which isn't capable of
# auto-detecting FS types).
extraUtils
pkgs.klibcShrunk
];
};
# The closure of the init script of boot stage 1 is what we put in
# the initial RAM disk.
initialRamdisk = pkgs.makeInitrd {
contents = [
{ object = bootStage1;
symlink = "/init";
}
] ++
pkgs.lib.optionals
(config.boot.initrd.enableSplashScreen && kernelPackages.splashutils != null)
[
{ object = pkgs.runCommand "splashutils" {allowedReferences = []; buildInputs = [pkgs.nukeReferences];} ''
ensureDir $out/bin
cp ${kernelPackages.splashutils}/${kernelPackages.splashutils.helperName} $out/bin/splash_helper
nuke-refs $out/bin/*
'';
suffix = "/bin/splash_helper";
symlink = "/${kernelPackages.splashutils.helperName}";
} # */
{ object = import ../helpers/unpack-theme.nix {
inherit (pkgs) stdenv;
theme = config.services.ttyBackgrounds.defaultTheme;
};
symlink = "/etc/splash";
}
];
};
}