- merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git.
- remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required.
- fixes https://github.com/NixOS/nixpkgs/issues/166205
- provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548https://github.com/NixOS/nix/issues/9640
- pkgsCross.x86_64-freebsd builds work again
This change can be represented in 3 stages
1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi}
2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin}
3. remove all references to libcxxabi outside of llvm (about 58 packages modified)
### merging libcxxabi into libcxx
- take the union of the libcxxabi and libcxx cmake flags
- eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency
- libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx.
- darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient.
- linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient.
- libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+)
- git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway.
### stdenv changes
- darwin bootstrap, remove references to libcxxabi and cxxabi
- cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12)
- adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx
### 58 package updates
- remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed
- swift, nodejs_v8 remove libcxxabi references in the clang override
https://github.com/NixOS/nixpkgs/pull/292043
stdenv.targetPlatform really shouldn't be used by software that
doesn't generate or manipulate binaries. I reviewed all uses of
targetPlatform outside of pkgs/development/compilers and pkgs/stdenv
and replaced those which weren't involved in something which fits
these criteria.
We need this stuff to be available in lib so make-derivation.nix can
access it to construct the Meson cross file.
This has a couple of other advantages:
- It makes Rust less special. Now figuring out what Rust calls a
platform is the same as figuring out what Linux or QEMU call it.
- We can unify the schema used to define Rust targets, and the schema
used to access those values later. Just like you can set "config"
or "system" in a platform definition, and then access those same
keys on the elaborated platform, you can now set "rustcTarget" in
your crossSystem, and then access "stdenv.hostPlatform.rustcTarget"
in your code.
"rustcTarget", "rustcTargetSpec", "cargoShortTarget", and
"cargoEnvVarTarget" have the "rustc" and "cargo" prefixes because
these are not exposed to code by the compiler, and are not
standardized. The arch/os/etc. variables are all named to match the
forms in the Rust target spec JSON.
The new rust.target-family only takes a list, since we don't need to
worry about backwards compatibility when that name is used.
The old APIs are all still functional with no warning for now, so that
it's possible for external code to use a single API on both 23.05 and
23.11. We can introduce the warnings once 23.05 is EOL, and make them
hard errors when 23.11 is EOL.