The long term goal is a big replace:
{ inherit system platform; } => buildPlatform
crossSystem => hostPlatform
stdenv.cross => targetPlatform
And additionally making sure each is defined even when not cross compiling.
This commit refactors the bootstrapping code along that vision, but leaves
the old identifiers with their null semantics in place so packages can be
modernized incrementally.
[N.B., this package also applies to the commits that follow it in the same
PR.]
In most cases, buildPackages = pkgs so things work just as before. For
cross compiling, however, buildPackages is resolved as the previous
bootstrapping stage. This allows us to avoid the mkDerivation hacks cross
compiling currently uses today.
To avoid a massive refactor, callPackage will splice together both package
sets. Again to avoid churn, it uses the old `nativeDrv` vs `crossDrv` to do
so. So now, whether cross compiling or not, packages with get a `nativeDrv`
and `crossDrv`---in the non-cross-compiling case they are simply the same
derivation. This is good because it reduces the divergence between the
cross and non-cross dataflow. See `pkgs/top-level/splice.nix` for a comment
along the lines of the preceding paragraph, and the code that does this
splicing.
Also, `forceNativeDrv` is replaced with `forceNativePackages`. The latter
resolves `pkgs` unless the host platform is different from the build
platform, in which case it resolves to `buildPackages`. Note that the
target platform is not important here---it will not prevent
`forcedNativePackages` from resolving to `pkgs`.
--------
Temporarily, we make preserve some dubious decisions in the name of preserving
hashes:
Most importantly, we don't distinguish between "host" and "target" in the
autoconf sense. This leads to the proliferation of *Cross derivations
currently used. What we ought to is resolve native deps of the cross "build
packages" (build = host != target) package set against the "vanilla
packages" (build = host = target) package set. Instead, "build packages"
uses itself, with (informally) target != build in all cases.
This is wrong because it violates the "sliding window" principle of
bootstrapping stages that shifting the platform triple of one stage to the
left coincides with the next stage's platform triple. Only because we don't
explicitly distinguish between "host" and "target" does it appear that the
"sliding window" principle is preserved--indeed it is over the reductionary
"platform double" of just "build" and "host/target".
Additionally, we build libc, libgcc, etc in the same stage as the compilers
themselves, which is wrong because they are used at runtime, not build
time. Fixing this is somewhat subtle, and the solution and problem will be
better explained in the commit that does fix it.
Commits after this will solve both these issues, at the expense of breaking
cross hashes. Native hashes won't be broken, thankfully.
--------
Did the temporary ugliness pan out? Of the packages that currently build in
`release-cross.nix`, the only ones that have their hash changed are
`*.gcc.crossDrv` and `bootstrapTools.*.coreutilsMinimal`. In both cases I
think it doesn't matter.
1. GCC when doing a `build = host = target = foreign` build (maximally
cross), still defines environment variables like `CPATH`[1] with
packages. This seems assuredly wrong because whether gcc dynamically
links those, or the programs built by gcc dynamically link those---I
have no idea which case is reality---they should be foreign. Therefore,
in all likelihood, I just made the gcc less broken.
2. Coreutils (ab)used the old cross-compiling infrastructure to depend on
a native version of itself. When coreutils was overwritten to be built
with fewer features, the native version it used would also be
overwritten because the binding was tight. Now it uses the much looser
`BuildPackages.coreutils` which is just fine as a richer build dep
doesn't cause any problems and avoids a rebuild.
So, in conclusion I'd say the conservatism payed off. Onward to actually
raking the muck in the next PR!
[1]: https://gcc.gnu.org/onlinedocs/gcc/Environment-Variables.html
This patch add a new argument to Nixpkgs default expression named "overlays".
By default, the value of the argument is either taken from the environment variable `NIXPKGS_OVERLAYS`,
or from the directory `~/.nixpkgs/overlays/`. If the environment variable does not name a valid directory
then this mechanism would fallback on the home directory. If the home directory does not exists it will
fallback on an empty list of overlays.
The overlays directory should contain the list of extra Nixpkgs stages which would be used to extend the
content of Nixpkgs, with additional set of packages. The overlays, i-e directory, files, symbolic links
are used in alphabetical order.
The simplest overlay which extends Nixpkgs with nothing looks like:
```nix
self: super: {
}
```
More refined overlays can use `super` as the basis for building new packages, and `self` as a way to query
the final result of the fix-point.
An example of overlay which extends Nixpkgs with a small set of packages can be found at:
https://github.com/nbp/nixpkgs-mozilla/blob/nixpkgs-overlay/moz-overlay.nix
To use this file, checkout the repository and add a symbolic link to
the `moz-overlay.nix` file in `~/.nixpkgs/overlays` directory.
`gcc-unwrapped` basically replaces `gccPlain`. It may seem like an ugly
polution to stick it in all-packages, but a future PR will enshrine this
`*-unwrapped` pattern. In any event, the long term goal is stdenvs might
need to tweak how compilers are booted and wrapped, but the code to build
the unwrapped compilers themselves should be generic.
Introduce new abstraction, `stdenv/booter.nix` for composing bootstraping
stages, and use it everywhere for consistency. See that file for more doc.
Stdenvs besides Linux and Darwin are completely refactored to utilize this.
Those two, due to their size and complexity, are minimally edited for
easier reviewing.
No hashes should be changed.
On one hand, don't want to pass garbage that affects hash, on the other
hand footguns are bad.
Now, factored out the derivation so only need to pass in what is used.
- The darwin test can now force the use of the freshly-booted darwin stdenv
- The linux test now passes enough dummy arguments
This may make debugging harder, if so, check out #20889
- Non-cross stdenvs are honest and assert that `crossSystem` is null
- `crossSystem` is a mandatory argument to top-level/stage.nix, just like
`system` and `platform`
- Broken default arguments on stdenvs for testing are gone.
- All stdenvs (but little-used stdenvNix) take the same arguments for easy
testing.
This makes the flow of data easier to understand. There's little downside
because the args in question are already inspected by the stdenvs.
cross-compiling in particular is simpler because we don't need to worry
about overriding the config closed over by `allPackages`.
This commit changes the dependencies of stdenv, and clean-up the stdenv
story by removing the `defaultStdenv` attribute as well as the `bootStdenv`
parameter.
Before, the final bootstrapping stage's stdenv was provided by
all-packages, which was iterating multiple times over the
top-level/default.nix expression, and non-final bootstrapping stages'
stdenvs were explicitly specified with the `bootStdenv` parameter.
Now, all stages' stdenvs are specified with the `stdenv` parameter.
For non-final bootstrapping stages, this is a small change---basically just
rename the parameter.
For the final stage, top-level/default.nix takes the chosen stdenv and
makes the final stage with it.
`allPackages` is used to make all bootstrapping stages, final and
non-final alike. It's basically the expression of `stage.nix` (along with a
few partially-applied default arguments)
Note, the make-bootstrap-tools scripts are temporarily broken
I broke this in the cleanups I did in 171c7f0, the gcc inside the bootstrap
tarball is not getting built with the correct --with-fpu, --with-float
etc. options.
- cloog, ppl, cloogppl aren't used by recent GCCs. Kill references to them.
- Use correct versions of isl, as the current GCC depends
on non-default versions of them.
- Also clarify isl dynamic libraries are needed in cross
builds, but not in native builds
- Since aeb3d8c (bzip2: fix cross build on mingw by using autoconf patch),
it seems that the bzip2 binary depends on libbz2 when cross compiling.
So copy libbz2 into the bootstrap tarball as well.
- Curl isn't used in the bootstrap tools since e6f61b4cf3.
Our coreutils now uses single-binary-build mode where, by default,
simple shebang scripts are used for all the binaries. That doesn't work
e.g. with the Linux unpacker which only handles standard binaries and
symlinks. Let's use the symlinked mode instead for boostrapping.
This does NOT change any stdenv hashes.
I only tested the case most important to me:
$ nix-build pkgs/top-level/release.nix -A stdenvBootstrapTools.x86_64-linux.test
For some reason, the current bootstrap tools fail to build gettext:
init2.c:37: MPFR assertion failed: (64 - 0) == ((64 - 0)/8) * 8 && sizeof(mp_limb_t) == ((64 - 0)/8)
libxml/xpath.c: In function 'xmlXPathCompPathExpr':
libxml/xpath.c:10627:1: internal compiler error: Aborted
xmlXPathCompPathExpr(xmlXPathParserContextPtr ctxt) {
^
Please submit a full bug report,
with preprocessed source if appropriate.
See <http://gcc.gnu.org/bugs.html> for instructions.
make[5]: *** [libxml/libxml_rpl_la-xpath.lo] Error 1
I didn't investigate why this is the case but rebuilding the bootstrap
tools seems to help.
I used this old-ish WIP branch https://github.com/dezgeg/nixpkgs/commits/arm-bootstrap
since latest master has even more problems with cross-compiling anything.
(I will eventually push this stuff and make the ARM bootstraps build on hydra.)
I assume there's not much use for it during bootstrapping.
This fixes them as well, as curl was compiled against libnghttp2 but the
lib wasn't copied to the bootstrap tools.
The most complex problems were from dealing with switches reverted in
the meantime (gcc5, gmp6, ncurses6).
It's likely that darwin is (still) broken nontrivially.
Otherwise this fails on ARM:
/nix/store/jipqp9739n7wrjz40igbk85pqk13s0ad-binutils-2.23.1/bin/ld: /nix/store/92pdpqrqkdf8wjciq1cisvsp8kdz8p2i-gmp-5.1.3/lib/libgmp.a(mp_get_fns.o): relocation R_ARM_MOVW_ABS_NC against `__gmp_allocate_func' can not be used when making a shared object; recompile with -fPIC
/nix/store/92pdpqrqkdf8wjciq1cisvsp8kdz8p2i-gmp-5.1.3/lib/libgmp.a: could not read symbols: Bad value
collect2: error: ld returned 1 exit status
make[2]: *** [libisl.la] Error 1
make[2]: *** Waiting for unfinished jobs....
make[2]: Leaving directory `/tmp/nix-build-isl-0.11.1.drv-3/isl-0.11.1'
make[1]: *** [all-recursive] Error 1
make[1]: Leaving directory `/tmp/nix-build-isl-0.11.1.drv-3/isl-0.11.1'
make: *** [all] Error 2
builder for ‘/nix/store/a8ghniifd8d8agqx0cqsh41daa08v11c-isl-0.11.1.drv’ failed with exit code 2
Several places in the tree associate the ARMv7 system
with the beaglebone platform. Change them to point to
armv7l-hf-multiplatform as it supports several boards (including the
beaglebone as well)
- there were many easy merge conflicts
- cc-wrapper needed nontrivial changes
Many other problems might've been created by interaction of the branches,
but stdenv and a few other packages build fine now.
Attrnames and package names should be as close as possible to avoid confusion.
I took care not to confuse the two mpc things during the mass-replace,
so hopefully I suceeded (tarball still builds).