Documents the _module.args option, motivated by many usages in Flakes,
especially with the deprecation of extraArgs
(78ada83361)
The documentation rendering for this option had to be handled a bit
specially, since it's not declared in nixos/modules like all the other
NixOS options.
Co-Authored-By: pennae <github@quasiparticle.net>
Co-Authored-By: Robert Hensing <robert@roberthensing.nl>
`builtins.currentSystem` is not available in pure eval. For this
particular test, we don't really care since it's all about generating
.drv files.
Fixes the following error:
$ nix flake check
warning: unknown flake output 'lib'
error: attribute 'currentSystem' missing
at /nix/store/8wvnlbjxlr90kq2qa6d9zjpj8rqkilr5-source/lib/tests/misc.nix:499:73:
498| let
499| deriv = derivation { name = "test"; builder = "/bin/sh"; system = builtins.currentSystem; };
| ^
500| in {
(use '--show-trace' to show detailed location informat
As suggested in #131205.
Now it's possible to pretty-print a value with `lib.generators` like
this:
with lib.generators;
toPretty { }
(withRecursion { depthLimit = 10; } /* arbitrarily complex value */)
Also, this can be used for any other pretty-printer now if needed.
When having e.g. recursive attr-set, it cannot be printed which is
solved by Nix itself like this:
$ nix-instantiate --eval -E 'let a.b = 1; a.c = a; in builtins.trace a 1'
trace: { b = 1; c = <CYCLE>; }
1
However, `generators.toPretty` tries to evaluate something until it's
done which can result in a spurious `stack-overflow`-error:
$ nix-instantiate --eval -E 'with import <nixpkgs/lib>; generators.toPretty { } (mkOption { type = types.str; })'
error: stack overflow (possible infinite recursion)
Those attr-sets are in fact rather common, one example is shown above, a
`types.<type>`-declaration is such an example. By adding an optional
`depthLimit`-argument, `toPretty` will stop evaluating as soon as the
limit is reached:
$ nix-instantiate --eval -E 'with import ./Projects/nixpkgs-update-int/lib; generators.toPretty { depthLimit = 2; } (mkOption { type = types.str; })' |xargs -0 echo -e
"{
_type = \"option\";
type = {
_type = \"option-type\";
check = <function>;
deprecationMessage = null;
description = \"string\";
emptyValue = { };
functor = {
binOp = <unevaluated>;
name = <unevaluated>;
payload = <unevaluated>;
type = <unevaluated>;
wrapped = <unevaluated>;
};
getSubModules = null;
getSubOptions = <function>;
merge = <function>;
name = \"str\";
nestedTypes = { };
substSubModules = <function>;
typeMerge = <function>;
};
}"
Optionally, it's also possible to let `toPretty` throw an error if the
limit is exceeded.
- These symbols can be confusing for those not familiar with them
- There's no harm in making these more obvious
- Terminals may not print them correctly either
Also changes the function argument printing slightly to be more obvious
`toHex` converts the given positive integer to a string of the hexadecimal
representation of that integer. For example:
```
toHex 0 => "0"
toHex 16 => "10"
toHex 250 => "FA"
```
`toBase base i` converts the positive integer `i` to a list of it
digits in the given `base`. For example:
```
toBase 10 123 => [ 1 2 3 ]
toBase 2 6 => [ 1 1 0 ]
toBase 16 250 => [ 15 10 ]
```
The semantic difference between `encode` and `to` is not apparent.
Users are likely to confuse both functions (which leads to unexpected
error messages about the wrong types). Like in `generators.nix`, all
functions should be prefixed by `to`.
Furthermore, converting to a string depends on the target context. In
this case, it’s a POSIX shell, so we should name it that (compare
`escapeShellArg` in `strings.nix`).
We can later add versions that escape for embedding in e.g. python
scripts or similar.
This adds a new utility to intelligently convert Nix records to
command line options to reduce boilerplate for simple use cases and to
also reduce the likelihood of malformed command lines
`pipe` is a useful operator for creating pipelines of functions.
It works around the usual problem of e.g. string operations becoming
deeply nested functions.
In principle, there are four different ways this function could be
written:
pipe val [ f1 .. fn ]
pipe val [ fn .. f1 ]
compose [ f1 .. fn ] val
compose [ fn .. f1 ] val
The third and fourth form mirror composition of functions, they would
be the same as e.g. `(f1 << f2 << f3 .. << fn) val`.
However, it is not clear which direction the list should have (as one
can see in the second form, which is the most absurd.
In order not to confuse users, we decide for the most “intuitive”
form, which mirrors the way unix pipes work (thus the name `pipe`).
The flow of data goes from left to right.
Co-Authored-By: Silvan Mosberger <infinisil@icloud.com>