Following legacy packing conventions, `isArm` was defined just for
32-bit ARM instruction set. This is confusing to non packagers though,
because Aarch64 is an ARM instruction set.
The official ARM overview for ARMv8[1] is surprisingly not confusing,
given the overall state of affairs for ARM naming conventions, and
offers us a solution. It divides the nomenclature into three levels:
```
ISA: ARMv8 {-A, -R, -M}
/ \
Mode: Aarch32 Aarch64
| / \
Encoding: A64 A32 T32
```
At the top is the overall v8 instruction set archicture. Second are the
two modes, defined by bitwidth but differing in other semantics too, and
buttom are the encodings, (hopefully?) isomorphic if they encode the
same mode.
The 32 bit encodings are mostly backwards compatible with previous
non-Thumb and Thumb encodings, and if so we can pun the mode names to
instead mean "sets of compatable or isomorphic encodings", and then
voilà we have nice names for 32-bit and 64-bit arm instruction sets
which do not use the word ARM so as to not confused either laymen or
experienced ARM packages.
[1]: https://developer.arm.com/products/architecture/a-profile
(cherry picked from commit ba52ae5048)
Following legacy packing conventions, `isArm` was defined just for
32-bit ARM instruction set. This is confusing to non packagers though,
because Aarch64 is an ARM instruction set.
The official ARM overview for ARMv8[1] is surprisingly not confusing,
given the overall state of affairs for ARM naming conventions, and
offers us a solution. It divides the nomenclature into three levels:
```
ISA: ARMv8 {-A, -R, -M}
/ \
Mode: Aarch32 Aarch64
| / \
Encoding: A64 A32 T32
```
At the top is the overall v8 instruction set archicture. Second are the
two modes, defined by bitwidth but differing in other semantics too, and
buttom are the encodings, (hopefully?) isomorphic if they encode the
same mode.
The 32 bit encodings are mostly backwards compatible with previous
non-Thumb and Thumb encodings, and if so we can pun the mode names to
instead mean "sets of compatable or isomorphic encodings", and then
voilà we have nice names for 32-bit and 64-bit arm instruction sets
which do not use the word ARM so as to not confused either laymen or
experienced ARM packages.
[1]: https://developer.arm.com/products/architecture/a-profile
This commit breaks native armv7l-linux builds. Revert it until it can
be root-caused. This reversion does not affect other platforms or
cross-compiling.
This reverts commit 0f5c804631.
Now that we do `--enable-targes=all`, there is no risk of missing the
needed emulation.
This reverts commit ebc9b161cd.
This reverts commit 88efc22b44.
- NIX_CC_CROSS is now completely gone!
- NIX_CC is defined reliably, so no manual def needed
- stdenv.ccCross -> stdenv.cc, also removing need for "or" fallback
Previously configureFlags was defined as one giant interpolated string.
Here we refactor this definition to instead use the usual stdenv string
combinators. This seems more in-line with the average nixpkgs expression
and it seems a bit more natural to things of these as lists of flags
rather than monolithic strings.
One should do this when needed executables at run time. It is more
honest and cross-friendly than refering to binutils directly, if one
neeeds the default binary tools for the target platform, rather than
binutils in particular.
...just as we did for binutils. When the underlying issue is resolved
(probably with a configure script patch or lib/systems/parse.nix
change), this should be reverted.
Host everywhere would be guaranteed to preserve the old semantics,
but in a few places it doesn't matter in practice, target is used
instead for clarity.
See previous commit for what was done to `binutils` to make this
possible.
There were some uses of `forcedNativePackages` added. The
combination of overrides with that attribute is highly spooky: it's
often important that if an overridden package comes from it, the
replaced arguments for that package come from it. Long term this
package set and all the spookiness should be gone and irrelevant:
"Move along, nothing to see here!"
No hashes should be changed with this commit
The previous commit redefines `stdenv.cross` for the sake of normal
libaries, the most common use-case of that attribute. Some compilers
however relied on the old definition so we have them use
`targetPlatform` instead. This special casing is fine because we
eventually want to remove `stdenv.cross` and use either `hostPlatform`
or `targetPlatform` instead.
Darwin systems need to be able to find CoreFoundation headers as well as
libc headers. Somehow, gcc doesn't accept any "framework" parameters
that would normally be used to include CoreFoundation in this
situation.
HACK: Instead, this adds a derivation that combines the two. The result
works but probably not a good long term solution.
ALTERNATIVES: Maybe sending patches in to GCC to allow
"native-system-framework" configure flag to get this found.
gcc needs to be able find system headers. Without this, gcc fails to build because
/usr/include is not available.
Note: stdenv.libc should be available for all stdenv's, I think.
This should get gcc48, gcc5, and gcc6 working again.
Also: use makeLibraryPath, and makeSearchPathOutput for LIBRARY_PATH and
CPATH. This is a refactor but it also fixes an issue with zlib.
- disable bootstrap builds on Darwin
- remove xcrun calls
- check if patchelf is available before using
- apply darwin patch for gcc4.9
- fixes#16047
- fixes#14812
The following parameters are now available:
* hardeningDisable
To disable specific hardening flags
* hardeningEnable
To enable specific hardening flags
Only the cc-wrapper supports this right now, but these may be reused by
other wrappers, builders or setup hooks.
cc-wrapper supports the following flags:
* fortify
* stackprotector
* pie (disabled by default)
* pic
* strictoverflow
* format
* relro
* bindnow
- there were many easy merge conflicts
- cc-wrapper needed nontrivial changes
Many other problems might've been created by interaction of the branches,
but stdenv and a few other packages build fine now.
Attrnames and package names should be as close as possible to avoid confusion.
I took care not to confuse the two mpc things during the mass-replace,
so hopefully I suceeded (tarball still builds).