This module obsoletes services.gnome3.gnome-terminal-server
as that's a confusing option for users, and sounds internal.
It's much simpler to have a gnome-terminal module.
This module correctly includes the vte.sh script
required for vte terminals like gnome-terminal to show the
CWD in the window title and preserved across instances.
This is achieved with the options:
* programs.bash.vteIntegration
* programs.zsh.vteIntegration
as it's best to keep this configuration unguarded by gnome3.enable
to support other vte terminals (such as elementary-terminal).
Note the distinction between Zsh and Bash doesn't include
a different script, as this script only supports those two shells.
Add support for custom device-tree files, and applying overlays to them.
This is useful for supporting non-discoverable hardware, such as sensors
attached to GPIO pins on a Raspberry Pi.
This is a refactor of how resolvconf is managed on NixOS. We split it
into a separate service which is enabled internally depending on whether
we want /etc/resolv.conf to be managed by it. Various services now take
advantage of those configuration options.
We also now use systemd instead of activation scripts to update
resolv.conf.
NetworkManager now uses the right option for rc-manager DNS
automatically, so the configuration option shouldn't be exposed.
This commit brings a module that installs the
IBM Spectrum Protect (Tivoli Storage Manager)
command-line client together with its
system-wide client system-options file `dsm.sys`.
The autoLuks module is not really compatible with the updated systemd
version anymore. We started dropping NixOS specific patches that caused
unwanted side effects that we had to work around otherwise.
This change points users towards the relevant PR and spits out a bit of
information on how to deal with the situation.
Remove the btsync module. Bittorrent Sync was renamed to Resilio Sync in
2016, which is supported by the resilio module. Since Resilio Sync had
some security updates since 2016, it is not safe to run Bittorrent Sync
anymore.
The clickshare-csc1 package brings a udev rule file
to grant access to the ClickShare dongle if connected.
This module provides an option to install that rule file.
Only users in the "clickshare" users group have access.
The module installs `zmap` globally and links the config files to
`/etc/zmap`, the default location of config files for zmap.
The package provides pretty much a sensitive default, custom configs can
be created like this:
```
{ lib, ... }:
{
environment.etc."zmap/blacklist.conf" = lib.mkForce {
text = ''
# custom zmap blacklist
0.0.0.0/0
'';
};
}
```
Currently, this uses the somewhat crude method of setting LD_PRELOAD in the
system environment. This works, but should be considered a stepping stone to
a more robust solution.
This is an implementation of wireguard support using wg-quick config
generation.
This seems preferrable to the existing wireguard support because
it handles many more routing and resolvconf edge cases than the
current wireguard support.
It also includes work-arounds to make key files work.
This has one quirk:
We need to set reverse path checking in the firewall to false because
it interferes with the way wg-quick sets up its routing.
Documize is an open-source alternative for wiki software like Confluence
based on Go and EmberJS. This patch adds the sources for the community
edition[1], for commercial their paid-plan[2] needs to be used.
For commercial use a derivation that bundles the commercial package and
contains a `$out/bin/documize` can be passed to
`services.documize.enable`.
The package compiles the Go sources, the build process also bundles the
pre-built frontend from `gui/public` into the binary.
The NixOS module generates a simple `systemd` unit which starts the
service as a dynamic user, database and a reverse proxy won't be
configured.
[1] https://www.documize.com/get-started/
[2] https://www.documize.com/pricing/
Currently if you want to properly chroot a systemd service, you could do
it using BindReadOnlyPaths=/nix/store or use a separate derivation which
gathers the runtime closure of the service you want to chroot. The
former is the easier method and there is also a method directly offered
by systemd, called ProtectSystem, which still leaves the whole store
accessible. The latter however is a bit more involved, because you need
to bind-mount each store path of the runtime closure of the service you
want to chroot.
This can be achieved using pkgs.closureInfo and a small derivation that
packs everything into a systemd unit, which later can be added to
systemd.packages.
However, this process is a bit tedious, so the changes here implement
this in a more generic way.
Now if you want to chroot a systemd service, all you need to do is:
{
systemd.services.myservice = {
description = "My Shiny Service";
wantedBy = [ "multi-user.target" ];
confinement.enable = true;
serviceConfig.ExecStart = "${pkgs.myservice}/bin/myservice";
};
}
If more than the dependencies for the ExecStart* and ExecStop* (which
btw. also includes script and {pre,post}Start) need to be in the chroot,
it can be specified using the confinement.packages option. By default
(which uses the full-apivfs confinement mode), a user namespace is set
up as well and /proc, /sys and /dev are mounted appropriately.
In addition - and by default - a /bin/sh executable is provided, which
is useful for most programs that use the system() C library call to
execute commands via shell.
Unfortunately, there are a few limitations at the moment. The first
being that DynamicUser doesn't work in conjunction with tmpfs, because
systemd seems to ignore the TemporaryFileSystem option if DynamicUser is
enabled. I started implementing a workaround to do this, but I decided
to not include it as part of this pull request, because it needs a lot
more testing to ensure it's consistent with the behaviour without
DynamicUser.
The second limitation/issue is that RootDirectoryStartOnly doesn't work
right now, because it only affects the RootDirectory option and doesn't
include/exclude the individual bind mounts or the tmpfs.
A quirk we do have right now is that systemd tries to create a /usr
directory within the chroot, which subsequently fails. Fortunately, this
is just an ugly error and not a hard failure.
The changes also come with a changelog entry for NixOS 19.03, which is
why I asked for a vote of the NixOS 19.03 stable maintainers whether to
include it (I admit it's a bit late a few days before official release,
sorry for that):
@samueldr:
Via pull request comment[1]:
+1 for backporting as this only enhances the feature set of nixos,
and does not (at a glance) change existing behaviours.
Via IRC:
new feature: -1, tests +1, we're at zero, self-contained, with no
global effects without actively using it, +1, I think it's good
@lheckemann:
Via pull request comment[2]:
I'm neutral on backporting. On the one hand, as @samueldr says,
this doesn't change any existing functionality. On the other hand,
it's a new feature and we're well past the feature freeze, which
AFAIU is intended so that new, potentially buggy features aren't
introduced in the "stabilisation period". It is a cool feature
though? :)
A few other people on IRC didn't have opposition either against late
inclusion into NixOS 19.03:
@edolstra: "I'm not against it"
@Infinisil: "+1 from me as well"
@grahamc: "IMO its up to the RMs"
So that makes +1 from @samueldr, 0 from @lheckemann, 0 from @edolstra
and +1 from @Infinisil (even though he's not a release manager) and no
opposition from anyone, which is the reason why I'm merging this right
now.
I also would like to thank @Infinisil, @edolstra and @danbst for their
reviews.
[1]: https://github.com/NixOS/nixpkgs/pull/57519#issuecomment-477322127
[2]: https://github.com/NixOS/nixpkgs/pull/57519#issuecomment-477548395
* WIP: Run Docker containers as declarative systemd services
* PR feedback round 1
* docker-containers: add environment, ports, user, workdir options
* docker-containers: log-driver, string->str, line wrapping
* ExecStart instead of script wrapper, %n for container name
* PR feedback: better description and example formatting
* Fix docbook formatting (oops)
* Use a list of strings for ports, expand documentation
* docker-continers: add a simple nixos test
* waitUntilSucceeds to avoid potential weird async issues
* Don't enable docker daemon unless we actually need it
* PR feedback: leave ExecReload undefined
acpilight package and module have been added to nixpkgs, but the
module hasn't been added to module-list.nix, so using it results in
the following error.
```
The option `hardware.acpilight' defined in `/etc/nixos/configuration.nix' does not exist.
```
Add the module to module-list.nix.
Quoting @edolstra from [1]:
I don't really like the name "chroot", something like "confine[ment]"
or "restrict" seems better. Conceptually we're not providing a
completely different filesystem tree but a restricted view of the same
tree.
I already used "confinement" as a sub-option and I do agree that
"chroot" sounds a bit too specific (especially because not *only* chroot
is involved).
So this changes the module name and its option to use "confinement"
instead of "chroot" and also renames the "chroot.confinement" to
"confinement.mode".
[1]: https://github.com/NixOS/nixpkgs/pull/57519#issuecomment-472855704
Signed-off-by: aszlig <aszlig@nix.build>
Currently, if you want to properly chroot a systemd service, you could
do it using BindReadOnlyPaths=/nix/store (which is not what I'd call
"properly", because the whole store is still accessible) or use a
separate derivation that gathers the runtime closure of the service you
want to chroot. The former is the easier method and there is also a
method directly offered by systemd, called ProtectSystem, which still
leaves the whole store accessible. The latter however is a bit more
involved, because you need to bind-mount each store path of the runtime
closure of the service you want to chroot.
This can be achieved using pkgs.closureInfo and a small derivation that
packs everything into a systemd unit, which later can be added to
systemd.packages. That's also what I did several times[1][2] in the
past.
However, this process got a bit tedious, so I decided that it would be
generally useful for NixOS, so this very implementation was born.
Now if you want to chroot a systemd service, all you need to do is:
{
systemd.services.yourservice = {
description = "My Shiny Service";
wantedBy = [ "multi-user.target" ];
chroot.enable = true;
serviceConfig.ExecStart = "${pkgs.myservice}/bin/myservice";
};
}
If more than the dependencies for the ExecStart* and ExecStop* (which
btw. also includes "script" and {pre,post}Start) need to be in the
chroot, it can be specified using the chroot.packages option. By
default (which uses the "full-apivfs"[3] confinement mode), a user
namespace is set up as well and /proc, /sys and /dev are mounted
appropriately.
In addition - and by default - a /bin/sh executable is provided as well,
which is useful for most programs that use the system() C library call
to execute commands via shell. The shell providing /bin/sh is dash
instead of the default in NixOS (which is bash), because it's way more
lightweight and after all we're chrooting because we want to lower the
attack surface and it should be only used for "/bin/sh -c something".
Prior to submitting this here, I did a first implementation of this
outside[4] of nixpkgs, which duplicated the "pathSafeName" functionality
from systemd-lib.nix, just because it's only a single line.
However, I decided to just re-use the one from systemd here and
subsequently made it available when importing systemd-lib.nix, so that
the systemd-chroot implementation also benefits from fixes to that
functionality (which is now a proper function).
Unfortunately, we do have a few limitations as well. The first being
that DynamicUser doesn't work in conjunction with tmpfs, because it
already sets up a tmpfs in a different path and simply ignores the one
we define. We could probably solve this by detecting it and try to
bind-mount our paths to that different path whenever DynamicUser is
enabled.
The second limitation/issue is that RootDirectoryStartOnly doesn't work
right now, because it only affects the RootDirectory option and not the
individual bind mounts or our tmpfs. It would be helpful if systemd
would have a way to disable specific bind mounts as well or at least
have some way to ignore failures for the bind mounts/tmpfs setup.
Another quirk we do have right now is that systemd tries to create a
/usr directory within the chroot, which subsequently fails. Fortunately,
this is just an ugly error and not a hard failure.
[1]: https://github.com/headcounter/shabitica/blob/3bb01728a0237ad5e7/default.nix#L43-L62
[2]: https://github.com/aszlig/avonc/blob/dedf29e092481a33dc/nextcloud.nix#L103-L124
[3]: The reason this is called "full-apivfs" instead of just "full" is
to make room for a *real* "full" confinement mode, which is more
restrictive even.
[4]: https://github.com/aszlig/avonc/blob/92a20bece4df54625e/systemd-chroot.nix
Signed-off-by: aszlig <aszlig@nix.build>