This enlarges the system uid/gid range 6-fold, from 100 to 600 ids. This
is a preventative measure against running out of dynamically allocated
ids for NixOS services with isSystemUser, which should become the
preferred way of allocating uids for non-real users.
This allows non-declarative users to change their login shells.
https://github.com/NixOS/nixpkgs/pull/41966 will make this possible
for declarative users as well if the system config explicitly allows it.
sg and newgrp only changes the current user session and should be
available to users even if the "users.mutableUsers" option is set.
These are common, useful commands.
chfn does modify the /etc/passwd GECOS field which is also controlled
by the option "users.users.<name?>.description", so it's less
appropriate to make it available when "users.mutableUsers" is set.
However, because CHFN_RESTRICT in login.defs is never set in current
NixOS the chfn functionality is never available to users anyway and
may as well have its SUID disabled, as only root is able to use it.
This is recommended in the chfn man page in this case.
Using pkgs.lib on the spine of module evaluation is problematic
because the pkgs argument depends on the result of module
evaluation. To prevent an infinite recursion, pkgs and some of the
modules are evaluated twice, which is inefficient. Using ‘with lib’
prevents this problem.
This is a rather large commit that switches user/group creation from using
useradd/groupadd on activation to just generating the contents of /etc/passwd
and /etc/group, and then on activation merging the generated files with the
files that exist in the system. This makes the user activation process much
cleaner, in my opinion.
The users.extraUsers.<user>.uid and users.extraGroups.<group>.gid must all be
properly defined (if <user>.createUser is true, which it is by default). My
pull request adds a lot of uids/gids to config.ids to solve this problem for
existing nixos services, but there might be configurations that break because
this change. However, this will be discovered during the build.
Option changes introduced by this commit:
* Remove the options <user>.isSystemUser and <user>.isAlias since
they don't make sense when generating /etc/passwd statically.
* Add <group>.members as a complement to <user>.extraGroups.
* Add <user>.passwordFile for setting a user's password from an encrypted
(shadow-style) file.
* Add users.mutableUsers which is true by default. This means you can keep
managing your users as previously, by using useradd/groupadd manually. This is
accomplished by merging the generated passwd/group file with the existing files
in /etc on system activation. The merging of the files is simplistic. It just
looks at the user/group names. If a user/group exists both on the system and
in the generated files, the system entry will be kept un-changed and the
generated entries will be ignored. The merging itself is performed with the
help of vipw/vigr to properly lock the account files during edit.
If mutableUsers is set to false, the generated passwd and group files will not
be merged with the system files on activation. Instead they will simply replace
the system files, and overwrite any changes done on the running system. The
same logic holds for user password, if the <user>.password or
<user>.passwordFile options are used. If mutableUsers is false, password will
simply be replaced on activation. If true, the initial user passwords will be
set according to the configuration, but existing passwords will not be touched.
I have tested this on a couple of different systems and it seems to work fine
so far. If you think this is a good idea, please test it. This way of adding
local users has been discussed in issue #103 (and this commit solves that
issue).
That is, you can say
security.pam.services.sshd = { options... };
instead of
security.pam.services = [ { name = "sshd"; options... } ];
making it easier to override PAM settings from other modules.