This provides a /etc/passwd and /etc/group that contain root and nobody.
Useful when packaging binaries that insist on using nss to look up
username/groups (like nginx).
The current nginx example used the `runAsRoot` parameter to setup
/etc/group and /etc/passwd (which also doesn't exist in
buildLayeredImage), so we can now just use fakeNss there and use
buildLayeredImage.
The image tag can be specified or generated from the output hash.
Previously, a generated tag could be recovered from the evaluated
image with some string operations.
However, with the introduction of streamLayeredImage, it's not
feasible to compute the generated tag yourself.
With this change, the imageTag attribute is set unconditionally,
for the buildImage, buildLayeredImage, streamLayeredImage functions.
This is useful when buildLayeredImage is called in a generic way
that should allow simple (base) images to be built, which may not
reference any store paths.
Fixes#78744
My previous change broke when there are more packages than the maximum
number of layers. I had assumed that the `store-path-to-layer.sh` was
only ever passed a single store path, but that is not the case if
there are multiple packages going into the final layer. To fix this, we
loop through the paths going into the final layer, appending them to the
tar file and making sure they end up at the right path.
Docker images used to be, essentially, a linked list of layers. Each
layer would have a tarball and a json document pointing to its parent,
and the image pointed to the top layer:
imageA ----> layerA
|
v
layerB
|
v
layerC
The current image spec changed this format to where the Image defined
the order and set of layers:
imageA ---> layerA
|--> layerB
`--> layerC
For backwards compatibility, docker produces images which follow both
specs: layers point to parents, and images also point to the entire
list:
imageA ---> layerA
| |
| v
|--> layerB
| |
| v
`--> layerC
This is nice for tooling which supported the older version and never
updated to support the newer format.
Our `buildImage` code only supported the old version, so in order for
`buildImage` to properly generate an image based on another image
with `fromImage`, the parent image's layers must fully support the old
mechanism.
This is not a problem in general, but is a problem with
`buildLayeredImage`.
`buildLayeredImage` creates images with newer image spec, because
individual store paths don't have a guaranteed parent layer. Including
a specific parent ID in the layer's json makes the output less likely
to cache hit when published or pulled.
This means until now, `buildLayeredImage` could not be the input to
`buildImage`.
The changes in this PR change `buildImage` to only use the layer's
manifest when locating parent IDs. This does break buildImage on
extremely old Docker images, though I do wonder how many of these
exist.
This work has been sponsored by Target.
docker-tools tests load images without specifying any tag
value. Docker then uses the image with tag "latest" which doesn't
exist anymore since commit 39e678e24e.
Skopeo is used to pull images from a Docker registry (instead of a
Docker deamon in a VM).
An image reference is specified with its name and its digest which is
an immutable image identifier (unlike image name and tag).
Skopeo can be used to get the digest of an image, for instance:
$ skopeo inspect docker://docker.io/nixos/nix:1.11 | jq -r '.Digest'
Currently, the contents closure is copied to the layer but there is no
nix database initialization. If pkgs.nix is added in the contents,
nix-store doesn't work because there is no nix database.
From the contents of the layer, this commit generates and loads the
database in the nix store of the container. This only works if there
is no parent layer that already have a nix store (to support several
nix layers, we would have to merge nix databases of parent layers).
We also add an example to play with the nix store inside the
container. Note it seems `more` is a missing dependency of the nix
package!
Before this patch, a VM was used to spawn docker that pulled the
VM. Now, the tool Skopeo does this job well so we can simplify our
dockerTools since we doesn't need Docker anymore:)
This also fixe the regression described in
https://github.com/NixOS/nixpkgs/issues/29271 : cntlm proxy doesn't
work in 17.09 while it worked in 17.03.
Note Skopeo doesn't produce the same output than docker pull so, we
have to update sha.