drgn/libdrgn/dwarf_info.c
Kevin Svetlitski 661d6a186c Add support for UTF character base types
Previously `drgn` did not recognize the	`DW_ATE_UTF` encoding for base
types, and consequently could not handle `char8_t`, `char16_t`, or
`char32_t`. This has been remedied, and a corresponding test case added
to prevent regressions.

Signed-off-by: Kevin Svetlitski <svetlitski@fb.com>
2022-07-06 09:44:16 -07:00

7897 lines
218 KiB
C

// Copyright (c) Meta Platforms, Inc. and affiliates.
// SPDX-License-Identifier: GPL-3.0-or-later
#include <assert.h>
#include <byteswap.h>
#include <dwarf.h>
#include <elf.h>
#include <elfutils/known-dwarf.h>
#include <elfutils/libdw.h>
#include <gelf.h>
#include <inttypes.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _OPENMP
#include <omp.h>
#else
typedef struct {} omp_lock_t;
#define omp_init_lock(lock) do {} while (0)
#define omp_destroy_lock(lock) do {} while (0)
#define omp_set_lock(lock) do {} while (0)
#define omp_unset_lock(lock) do {} while (0)
static inline int omp_get_thread_num(void)
{
return 0;
}
static inline int omp_get_max_threads(void)
{
return 1;
}
#endif
#include "array.h"
#include "debug_info.h" // IWYU pragma: associated
#include "error.h"
#include "language.h"
#include "lazy_object.h"
#include "minmax.h"
#include "object.h"
#include "path.h"
#include "program.h"
#include "register_state.h"
#include "serialize.h"
#include "type.h"
#include "util.h"
void drgn_dwarf_module_info_deinit(struct drgn_debug_info_module *module)
{
free(module->dwarf.fdes);
free(module->dwarf.cies);
}
static inline uintptr_t
drgn_dwarf_specification_to_key(const struct drgn_dwarf_specification *entry)
{
return entry->declaration;
}
DEFINE_HASH_TABLE_FUNCTIONS(drgn_dwarf_specification_map,
drgn_dwarf_specification_to_key, int_key_hash_pair,
scalar_key_eq)
/**
* Placeholder for drgn_dwarf_index_cu::file_name_hashes if the CU has no
* filenames.
*/
static const uint64_t no_file_name_hashes[1] = { 0 };
/** DWARF compilation unit indexed in a @ref drgn_namespace_dwarf_index. */
struct drgn_dwarf_index_cu {
/** Module containing CU. */
struct drgn_debug_info_module *module;
/** Address of CU data. */
const char *buf;
/** Length of CU data. */
size_t len;
/** DWARF version from CU header. */
uint8_t version;
/** `DW_UT_*` type from CU header. */
uint8_t unit_type;
/** Address size from CU header. */
uint8_t address_size;
/** Whether CU uses 64-bit DWARF format. */
bool is_64_bit;
/**
* Section containing CU (@ref DRGN_SCN_DEBUG_INFO or @ref
* DRGN_SCN_DEBUG_TYPES).
*/
enum drgn_debug_info_scn scn;
/**
* Mapping from DWARF abbreviation code to instructions for that
* abbreviation.
*
* This is indexed on the DWARF abbreviation code minus one. I.e.,
* `abbrev_insns[abbrev_decls[abbrev_code - 1]]` is the first
* instruction for that abbreviation code.
*
* Technically, abbreviation codes don't have to be sequential. In
* practice, GCC and Clang seem to always generate sequential codes
* starting at one, so we can get away with a flat array.
*/
uint32_t *abbrev_decls;
/** Number of abbreviation codes. */
size_t num_abbrev_decls;
/**
* Buffer of @ref drgn_dwarf_index_abbrev_insn instructions for all
* abbreviation codes.
*
* These are all stored in one array for cache locality.
*/
uint8_t *abbrev_insns;
/**
* Hashes of file names from line number program header for this CU,
* indexed by the line number program file numbers.
*/
uint64_t *file_name_hashes;
/** Number of file names in the line number program header. */
size_t num_file_names;
/**
* Pointer in `.debug_str_offsets` section to string offset entries for
* this CU.
*/
const char *str_offsets;
};
DEFINE_VECTOR_FUNCTIONS(drgn_dwarf_index_cu_vector)
DEFINE_HASH_MAP_FUNCTIONS(drgn_dwarf_type_map, ptr_key_hash_pair, scalar_key_eq)
/** DIE which needs to be indexed. */
struct drgn_dwarf_index_pending_die {
/**
* CU containing DIE (as an index into @ref drgn_dwarf_info::index_cus).
*/
size_t cu;
/** Address of DIE */
uintptr_t addr;
};
DEFINE_VECTOR_FUNCTIONS(drgn_dwarf_index_pending_die_vector)
/** DIE indexed in a @ref drgn_namespace_dwarf_index. */
struct drgn_dwarf_index_die {
/**
* The next DIE with the same name (as an index into @ref
* drgn_dwarf_index_shard::dies), or `UINT32_MAX` if this is the last
* DIE.
*/
uint32_t next;
/** DIE tag. */
uint8_t tag;
union {
/**
* Hash of filename containing declaration.
*
* DIEs with the same name but different tags or files are
* considered distinct. We only compare the hash of the file
* name, not the string value, because a 64-bit collision is
* unlikely enough, especially when also considering the name
* and tag.
*
* This is used if `tag != DW_TAG_namespace` (namespaces are
* merged, so they don't need this).
*/
uint64_t file_name_hash;
/** Nested namespace if `tag == DW_TAG_namespace`. */
struct drgn_namespace_dwarf_index *namespace;
};
/** Module containing this DIE. */
struct drgn_debug_info_module *module;
/** Address of this DIE. */
uintptr_t addr;
};
DEFINE_HASH_MAP(drgn_dwarf_index_die_map, struct nstring, uint32_t,
nstring_hash_pair, nstring_eq)
DEFINE_VECTOR(drgn_dwarf_index_die_vector, struct drgn_dwarf_index_die)
#define DRGN_DWARF_INDEX_SHARD_BITS 8
static const size_t DRGN_DWARF_INDEX_NUM_SHARDS = 1 << DRGN_DWARF_INDEX_SHARD_BITS;
/** Shard of a @ref drgn_namespace_dwarf_index. */
struct drgn_dwarf_index_shard {
/** Mutex for this shard. */
omp_lock_t lock;
/**
* Map from name to list of DIEs with that name (as the index in @ref
* drgn_dwarf_index_shard::dies of the first DIE with that name).
*/
struct drgn_dwarf_index_die_map map;
/**
* Entries in @ref drgn_dwarf_index_shard::map.
*
* These are stored in one array for cache locality.
*/
struct drgn_dwarf_index_die_vector dies;
};
static void
drgn_namespace_dwarf_index_init(struct drgn_namespace_dwarf_index *dindex,
struct drgn_debug_info *dbinfo)
{
dindex->shards = NULL;
dindex->dbinfo = dbinfo;
drgn_dwarf_index_pending_die_vector_init(&dindex->pending_dies);
dindex->saved_err = NULL;
}
static void
drgn_namespace_dwarf_index_deinit(struct drgn_namespace_dwarf_index *dindex)
{
drgn_error_destroy(dindex->saved_err);
drgn_dwarf_index_pending_die_vector_deinit(&dindex->pending_dies);
if (dindex->shards) {
for (size_t i = 0; i < DRGN_DWARF_INDEX_NUM_SHARDS; i++) {
struct drgn_dwarf_index_shard *shard = &dindex->shards[i];
for (size_t j = 0; j < shard->dies.size; j++) {
struct drgn_dwarf_index_die *die = &shard->dies.data[j];
if (die->tag == DW_TAG_namespace) {
drgn_namespace_dwarf_index_deinit(die->namespace);
free(die->namespace);
}
}
drgn_dwarf_index_die_vector_deinit(&shard->dies);
drgn_dwarf_index_die_map_deinit(&shard->map);
omp_destroy_lock(&shard->lock);
}
free(dindex->shards);
}
}
void drgn_dwarf_info_init(struct drgn_debug_info *dbinfo)
{
drgn_namespace_dwarf_index_init(&dbinfo->dwarf.global, dbinfo);
drgn_dwarf_specification_map_init(&dbinfo->dwarf.specifications);
drgn_dwarf_index_cu_vector_init(&dbinfo->dwarf.index_cus);
drgn_dwarf_type_map_init(&dbinfo->dwarf.types);
drgn_dwarf_type_map_init(&dbinfo->dwarf.cant_be_incomplete_array_types);
dbinfo->dwarf.depth = 0;
}
static void drgn_dwarf_index_cu_deinit(struct drgn_dwarf_index_cu *cu)
{
if (cu->file_name_hashes != no_file_name_hashes)
free(cu->file_name_hashes);
free(cu->abbrev_insns);
free(cu->abbrev_decls);
}
void drgn_dwarf_info_deinit(struct drgn_debug_info *dbinfo)
{
drgn_dwarf_type_map_deinit(&dbinfo->dwarf.cant_be_incomplete_array_types);
drgn_dwarf_type_map_deinit(&dbinfo->dwarf.types);
for (size_t i = 0; i < dbinfo->dwarf.index_cus.size; i++)
drgn_dwarf_index_cu_deinit(&dbinfo->dwarf.index_cus.data[i]);
drgn_dwarf_index_cu_vector_deinit(&dbinfo->dwarf.index_cus);
drgn_dwarf_specification_map_deinit(&dbinfo->dwarf.specifications);
drgn_namespace_dwarf_index_deinit(&dbinfo->dwarf.global);
}
/*
* Diagnostics.
*/
#define DW_TAG_UNKNOWN_FORMAT "unknown DWARF tag 0x%02x"
#define DW_TAG_BUF_LEN (sizeof(DW_TAG_UNKNOWN_FORMAT) - 4 + 2 * sizeof(int))
/**
* Get the name of a DWARF tag.
*
* @return Static string if the tag is known or @p buf if the tag is unknown
* (populated with a description).
*/
static const char *dw_tag_str(int tag, char buf[DW_TAG_BUF_LEN])
{
switch (tag) {
#define DWARF_ONE_KNOWN_DW_TAG(name, value) case value: return "DW_TAG_" #name;
DWARF_ALL_KNOWN_DW_TAG
#undef DWARF_ONE_KNOWN_DW_TAG
default:
sprintf(buf, DW_TAG_UNKNOWN_FORMAT, tag);
return buf;
}
}
/** Like @ref dw_tag_str(), but takes a @c Dwarf_Die. */
static const char *dwarf_tag_str(Dwarf_Die *die, char buf[DW_TAG_BUF_LEN])
{
return dw_tag_str(dwarf_tag(die), buf);
}
static struct drgn_error *
drgn_error_debug_info(struct drgn_debug_info_module *module, const char *ptr,
const char *message)
{
uintptr_t p = (uintptr_t)ptr;
int end_match = -1;
for (int i = 0; i < array_size(module->scn_data); i++) {
if (!module->scn_data[i])
continue;
uintptr_t start = (uintptr_t)module->scn_data[i]->d_buf;
uintptr_t end = start + module->scn_data[i]->d_size;
if (start <= p) {
if (p < end) {
return drgn_error_debug_info_scn(module, i, ptr,
message);
} else if (p == end) {
end_match = i;
}
}
}
if (end_match != -1) {
/*
* The pointer doesn't lie within a section, but it does point
* to the end of a section.
*/
return drgn_error_debug_info_scn(module, end_match, ptr,
message);
}
/* We couldn't find the section containing the pointer. */
const char *name = dwfl_module_info(module->dwfl_module, NULL, NULL,
NULL, NULL, NULL, NULL, NULL);
return drgn_error_format(DRGN_ERROR_OTHER, "%s: %s", name, message);
}
static inline struct drgn_error *drgn_check_address_size(uint8_t address_size)
{
if (address_size < 1 || address_size > 8) {
return drgn_error_format(DRGN_ERROR_OTHER,
"unsupported address size %" PRIu8,
address_size);
}
return NULL;
}
/*
* Indexing.
*
* A core part of debugger functionality is looking up types, variables, etc. by
* name. DWARF information can be very large, so scanning through all of it for
* every lookup would be too slow. Instead, when we load debugging information,
* we build an index of DIEs by name.
*
* This indexing step is parallelized and highly optimized. It is implemented as
* a bespoke DWARF parser specialized for the task of scanning over DIEs
* quickly.
*
* Although the DWARF standard defines ".debug_pubnames" and ".debug_names"
* sections, GCC and Clang currently don't emit them by default, so we don't use
* them.
*
* Every namespace has a separate index (@ref drgn_namespace_dwarf_index). The
* global namespace is indexed immediately upon loading debugging information.
* Other namespaces are indexed when they are first accessed.
*/
struct drgn_dwarf_index_pending_cu {
struct drgn_debug_info_module *module;
const char *buf;
size_t len;
bool is_64_bit;
enum drgn_debug_info_scn scn;
};
DEFINE_VECTOR_FUNCTIONS(drgn_dwarf_index_pending_cu_vector)
/**
* DWARF abbreviation table instructions.
*
* The DWARF abbreviation table can be large and contains more information than
* is strictly necessary for indexing. So, we translate the table into a series
* of instructions which specify how to process a DIE. This instruction stream
* omits unnecessary information and is more compact (and thus more cache
* friendly), which is important for the tight DIE parsing loop.
*/
enum drgn_dwarf_index_abbrev_insn {
/*
* Instructions > 0 and <= INSN_MAX_SKIP indicate a number of bytes to
* be skipped over.
*/
INSN_MAX_SKIP = 193,
/* These instructions indicate an attribute that can be skipped over. */
INSN_SKIP_BLOCK,
INSN_SKIP_BLOCK1,
INSN_SKIP_BLOCK2,
INSN_SKIP_BLOCK4,
INSN_SKIP_LEB128,
INSN_SKIP_STRING,
/* These instructions indicate an attribute that should be parsed. */
INSN_SIBLING_REF1,
INSN_SIBLING_REF2,
INSN_SIBLING_REF4,
INSN_SIBLING_REF8,
INSN_SIBLING_REF_UDATA,
INSN_NAME_STRP4,
INSN_NAME_STRP8,
INSN_NAME_STRING,
INSN_NAME_STRX,
INSN_NAME_STRX1,
INSN_NAME_STRX2,
INSN_NAME_STRX3,
INSN_NAME_STRX4,
INSN_NAME_STRP_ALT4,
INSN_NAME_STRP_ALT8,
INSN_COMP_DIR_STRP4,
INSN_COMP_DIR_STRP8,
INSN_COMP_DIR_LINE_STRP4,
INSN_COMP_DIR_LINE_STRP8,
INSN_COMP_DIR_STRING,
INSN_COMP_DIR_STRX,
INSN_COMP_DIR_STRX1,
INSN_COMP_DIR_STRX2,
INSN_COMP_DIR_STRX3,
INSN_COMP_DIR_STRX4,
INSN_COMP_DIR_STRP_ALT4,
INSN_COMP_DIR_STRP_ALT8,
INSN_STR_OFFSETS_BASE4,
INSN_STR_OFFSETS_BASE8,
INSN_STMT_LIST_LINEPTR4,
INSN_STMT_LIST_LINEPTR8,
INSN_DECL_FILE_DATA1,
INSN_DECL_FILE_DATA2,
INSN_DECL_FILE_DATA4,
INSN_DECL_FILE_DATA8,
INSN_DECL_FILE_UDATA,
/*
* This instruction is the only one with an operand: the ULEB128
* implicit constant.
*/
INSN_DECL_FILE_IMPLICIT,
INSN_DECLARATION_FLAG,
INSN_SPECIFICATION_REF1,
INSN_SPECIFICATION_REF2,
INSN_SPECIFICATION_REF4,
INSN_SPECIFICATION_REF8,
INSN_SPECIFICATION_REF_UDATA,
INSN_SPECIFICATION_REF_ADDR4,
INSN_SPECIFICATION_REF_ADDR8,
INSN_SPECIFICATION_REF_ALT4,
INSN_SPECIFICATION_REF_ALT8,
INSN_INDIRECT,
INSN_SIBLING_INDIRECT,
INSN_NAME_INDIRECT,
INSN_COMP_DIR_INDIRECT,
INSN_STR_OFFSETS_BASE_INDIRECT,
INSN_STMT_LIST_INDIRECT,
INSN_DECL_FILE_INDIRECT,
INSN_DECLARATION_INDIRECT,
INSN_SPECIFICATION_INDIRECT,
NUM_INSNS,
/*
* Every sequence of instructions for a DIE is terminated by a zero
* byte.
*/
INSN_END = 0,
/*
* The byte after INSN_END contains the DIE flags, which are a bitmask
* of flags combined with the DWARF tag (which is zero if the DIE does
* not need to be indexed).
*/
INSN_DIE_FLAG_TAG_MASK = 0x3f,
/* DIE is a declaration. */
INSN_DIE_FLAG_DECLARATION = 0x40,
/* DIE has children. */
INSN_DIE_FLAG_CHILDREN = 0x80,
};
/* Instructions are 8 bits. */
static_assert(NUM_INSNS - 1 == UINT8_MAX,
"maximum DWARF index instruction is invalid");
DEFINE_VECTOR(uint8_vector, uint8_t)
DEFINE_VECTOR(uint32_vector, uint32_t)
DEFINE_VECTOR(uint64_vector, uint64_t)
struct drgn_dwarf_index_cu_buffer {
struct binary_buffer bb;
struct drgn_dwarf_index_cu *cu;
};
static struct drgn_error *
drgn_dwarf_index_cu_buffer_error(struct binary_buffer *bb, const char *pos,
const char *message)
{
struct drgn_dwarf_index_cu_buffer *buffer =
container_of(bb, struct drgn_dwarf_index_cu_buffer, bb);
return drgn_error_debug_info_scn(buffer->cu->module,
DRGN_SCN_DEBUG_INFO, pos, message);
}
static void
drgn_dwarf_index_cu_buffer_init(struct drgn_dwarf_index_cu_buffer *buffer,
struct drgn_dwarf_index_cu *cu)
{
binary_buffer_init(&buffer->bb, cu->buf, cu->len,
drgn_platform_is_little_endian(&cu->module->platform),
drgn_dwarf_index_cu_buffer_error);
buffer->cu = cu;
}
static inline size_t hash_pair_to_shard(struct hash_pair hp)
{
/*
* The 8 most significant bits of the hash are used as the F14 tag, so
* we don't want to use those for sharding.
*/
return ((hp.first >>
(8 * sizeof(size_t) - 8 - DRGN_DWARF_INDEX_SHARD_BITS)) &
(DRGN_DWARF_INDEX_NUM_SHARDS - 1));
}
static bool
drgn_namespace_dwarf_index_alloc_shards(struct drgn_namespace_dwarf_index *dindex)
{
if (dindex->shards)
return true;
dindex->shards = malloc_array(DRGN_DWARF_INDEX_NUM_SHARDS,
sizeof(*dindex->shards));
if (!dindex->shards)
return false;
for (size_t i = 0; i < DRGN_DWARF_INDEX_NUM_SHARDS; i++) {
struct drgn_dwarf_index_shard *shard = &dindex->shards[i];
omp_init_lock(&shard->lock);
drgn_dwarf_index_die_map_init(&shard->map);
drgn_dwarf_index_die_vector_init(&shard->dies);
}
return true;
}
bool drgn_dwarf_index_state_init(struct drgn_dwarf_index_state *state,
struct drgn_debug_info *dbinfo)
{
state->dbinfo = dbinfo;
state->max_threads = omp_get_max_threads();
state->cus = malloc_array(state->max_threads, sizeof(*state->cus));
if (!state->cus)
return false;
for (size_t i = 0; i < state->max_threads; i++)
drgn_dwarf_index_pending_cu_vector_init(&state->cus[i]);
return true;
}
void drgn_dwarf_index_state_deinit(struct drgn_dwarf_index_state *state)
{
for (size_t i = 0; i < state->max_threads; i++)
drgn_dwarf_index_pending_cu_vector_deinit(&state->cus[i]);
free(state->cus);
}
static struct drgn_error *
drgn_dwarf_index_read_cus(struct drgn_dwarf_index_state *state,
struct drgn_debug_info_module *module,
enum drgn_debug_info_scn scn)
{
struct drgn_dwarf_index_pending_cu_vector *cus =
&state->cus[omp_get_thread_num()];
struct drgn_error *err;
struct drgn_debug_info_buffer buffer;
drgn_debug_info_buffer_init(&buffer, module, scn);
while (binary_buffer_has_next(&buffer.bb)) {
struct drgn_dwarf_index_pending_cu *cu =
drgn_dwarf_index_pending_cu_vector_append_entry(cus);
if (!cu)
return &drgn_enomem;
cu->module = module;
cu->buf = buffer.bb.pos;
uint32_t unit_length32;
if ((err = binary_buffer_next_u32(&buffer.bb, &unit_length32)))
return err;
cu->is_64_bit = unit_length32 == UINT32_C(0xffffffff);
if (cu->is_64_bit) {
uint64_t unit_length64;
if ((err = binary_buffer_next_u64(&buffer.bb,
&unit_length64)) ||
(err = binary_buffer_skip(&buffer.bb,
unit_length64)))
return err;
} else {
if ((err = binary_buffer_skip(&buffer.bb,
unit_length32)))
return err;
}
cu->len = buffer.bb.pos - cu->buf;
cu->scn = scn;
}
return NULL;
}
struct drgn_error *
drgn_dwarf_index_read_module(struct drgn_dwarf_index_state *state,
struct drgn_debug_info_module *module)
{
struct drgn_error *err;
err = drgn_dwarf_index_read_cus(state, module, DRGN_SCN_DEBUG_INFO);
if (!err && module->scn_data[DRGN_SCN_DEBUG_TYPES]) {
err = drgn_dwarf_index_read_cus(state, module,
DRGN_SCN_DEBUG_TYPES);
}
return err;
}
static struct drgn_error *dw_form_to_insn(struct drgn_dwarf_index_cu *cu,
struct binary_buffer *bb,
uint64_t form, uint8_t *insn_ret)
{
struct drgn_error *err;
switch (form) {
case DW_FORM_addr:
*insn_ret = cu->address_size;
return NULL;
case DW_FORM_data1:
case DW_FORM_ref1:
case DW_FORM_flag:
case DW_FORM_strx1:
case DW_FORM_addrx1:
*insn_ret = 1;
return NULL;
case DW_FORM_data2:
case DW_FORM_ref2:
case DW_FORM_strx2:
case DW_FORM_addrx2:
*insn_ret = 2;
return NULL;
case DW_FORM_strx3:
case DW_FORM_addrx3:
*insn_ret = 3;
return NULL;
case DW_FORM_data4:
case DW_FORM_ref4:
case DW_FORM_ref_sup4:
case DW_FORM_strx4:
case DW_FORM_addrx4:
*insn_ret = 4;
return NULL;
case DW_FORM_data8:
case DW_FORM_ref8:
case DW_FORM_ref_sig8:
case DW_FORM_ref_sup8:
*insn_ret = 8;
return NULL;
case DW_FORM_data16:
*insn_ret = 16;
return NULL;
case DW_FORM_block:
case DW_FORM_exprloc:
*insn_ret = INSN_SKIP_BLOCK;
return NULL;
case DW_FORM_block1:
*insn_ret = INSN_SKIP_BLOCK1;
return NULL;
case DW_FORM_block2:
*insn_ret = INSN_SKIP_BLOCK2;
return NULL;
case DW_FORM_block4:
*insn_ret = INSN_SKIP_BLOCK4;
return NULL;
case DW_FORM_sdata:
case DW_FORM_udata:
case DW_FORM_ref_udata:
case DW_FORM_strx:
case DW_FORM_addrx:
case DW_FORM_loclistx:
case DW_FORM_rnglistx:
*insn_ret = INSN_SKIP_LEB128;
return NULL;
case DW_FORM_ref_addr:
if (cu->version < 3) {
*insn_ret = cu->address_size;
return NULL;
}
/* fallthrough */
case DW_FORM_sec_offset:
case DW_FORM_strp:
case DW_FORM_strp_sup:
case DW_FORM_line_strp:
case DW_FORM_GNU_ref_alt:
case DW_FORM_GNU_strp_alt:
*insn_ret = cu->is_64_bit ? 8 : 4;
return NULL;
case DW_FORM_string:
*insn_ret = INSN_SKIP_STRING;
return NULL;
case DW_FORM_implicit_const:
if ((err = binary_buffer_skip_leb128(bb)))
return err;
/* fallthrough */
case DW_FORM_flag_present:
*insn_ret = 0;
return NULL;
case DW_FORM_indirect:
*insn_ret = INSN_INDIRECT;
return NULL;
default:
return binary_buffer_error(bb,
"unknown attribute form %#" PRIx64,
form);
}
}
static struct drgn_error *dw_at_sibling_to_insn(struct binary_buffer *bb,
uint64_t form,
uint8_t *insn_ret)
{
switch (form) {
case DW_FORM_ref1:
*insn_ret = INSN_SIBLING_REF1;
return NULL;
case DW_FORM_ref2:
*insn_ret = INSN_SIBLING_REF2;
return NULL;
case DW_FORM_ref4:
*insn_ret = INSN_SIBLING_REF4;
return NULL;
case DW_FORM_ref8:
*insn_ret = INSN_SIBLING_REF8;
return NULL;
case DW_FORM_ref_udata:
*insn_ret = INSN_SIBLING_REF_UDATA;
return NULL;
case DW_FORM_indirect:
*insn_ret = INSN_SIBLING_INDIRECT;
return NULL;
default:
return binary_buffer_error(bb,
"unknown attribute form %#" PRIx64 " for DW_AT_sibling",
form);
}
}
static struct drgn_error *dw_at_name_to_insn(struct drgn_dwarf_index_cu *cu,
struct binary_buffer *bb,
uint64_t form, uint8_t *insn_ret)
{
switch (form) {
case DW_FORM_strp:
if (!cu->module->scn_data[DRGN_SCN_DEBUG_STR]) {
return binary_buffer_error(bb,
"DW_FORM_strp without .debug_str section");
}
if (cu->is_64_bit)
*insn_ret = INSN_NAME_STRP8;
else
*insn_ret = INSN_NAME_STRP4;
return NULL;
case DW_FORM_string:
*insn_ret = INSN_NAME_STRING;
return NULL;
case DW_FORM_strx:
*insn_ret = INSN_NAME_STRX;
return NULL;
case DW_FORM_strx1:
*insn_ret = INSN_NAME_STRX1;
return NULL;
case DW_FORM_strx2:
*insn_ret = INSN_NAME_STRX2;
return NULL;
case DW_FORM_strx3:
*insn_ret = INSN_NAME_STRX3;
return NULL;
case DW_FORM_strx4:
*insn_ret = INSN_NAME_STRX4;
return NULL;
case DW_FORM_GNU_strp_alt:
if (!cu->module->alt_debug_str_data) {
return binary_buffer_error(bb,
"DW_FORM_GNU_strp_alt without alternate .debug_str section");
}
if (cu->is_64_bit)
*insn_ret = INSN_NAME_STRP_ALT8;
else
*insn_ret = INSN_NAME_STRP_ALT4;
return NULL;
case DW_FORM_indirect:
*insn_ret = INSN_NAME_INDIRECT;
return NULL;
default:
return binary_buffer_error(bb,
"unknown attribute form %#" PRIx64 " for DW_AT_name",
form);
}
}
static struct drgn_error *dw_at_comp_dir_to_insn(struct drgn_dwarf_index_cu *cu,
struct binary_buffer *bb,
uint64_t form,
uint8_t *insn_ret)
{
switch (form) {
case DW_FORM_strp:
if (!cu->module->scn_data[DRGN_SCN_DEBUG_STR]) {
return binary_buffer_error(bb,
"DW_FORM_strp without .debug_str section");
}
if (cu->is_64_bit)
*insn_ret = INSN_COMP_DIR_STRP8;
else
*insn_ret = INSN_COMP_DIR_STRP4;
return NULL;
case DW_FORM_line_strp:
if (!cu->module->scn_data[DRGN_SCN_DEBUG_LINE_STR]) {
return binary_buffer_error(bb,
"DW_FORM_line_strp without .debug_line_str section");
}
if (cu->is_64_bit)
*insn_ret = INSN_COMP_DIR_LINE_STRP8;
else
*insn_ret = INSN_COMP_DIR_LINE_STRP4;
return NULL;
case DW_FORM_string:
*insn_ret = INSN_COMP_DIR_STRING;
return NULL;
case DW_FORM_strx:
*insn_ret = INSN_COMP_DIR_STRX;
return NULL;
case DW_FORM_strx1:
*insn_ret = INSN_COMP_DIR_STRX1;
return NULL;
case DW_FORM_strx2:
*insn_ret = INSN_COMP_DIR_STRX2;
return NULL;
case DW_FORM_strx3:
*insn_ret = INSN_COMP_DIR_STRX3;
return NULL;
case DW_FORM_strx4:
*insn_ret = INSN_COMP_DIR_STRX4;
return NULL;
case DW_FORM_GNU_strp_alt:
if (!cu->module->alt_debug_str_data) {
return binary_buffer_error(bb,
"DW_FORM_GNU_strp_alt without alternate .debug_str section");
}
if (cu->is_64_bit)
*insn_ret = INSN_COMP_DIR_STRP_ALT8;
else
*insn_ret = INSN_COMP_DIR_STRP_ALT4;
return NULL;
case DW_FORM_indirect:
*insn_ret = INSN_COMP_DIR_INDIRECT;
return NULL;
default:
return binary_buffer_error(bb,
"unknown attribute form %#" PRIx64 " for DW_AT_comp_dir",
form);
}
}
static struct drgn_error *
dw_at_str_offsets_base_to_insn(struct drgn_dwarf_index_cu *cu,
struct binary_buffer *bb, uint64_t form,
uint8_t *insn_ret)
{
switch (form) {
case DW_FORM_sec_offset:
if (cu->is_64_bit)
*insn_ret = INSN_STR_OFFSETS_BASE8;
else
*insn_ret = INSN_STR_OFFSETS_BASE4;
return NULL;
case DW_FORM_indirect:
*insn_ret = INSN_STR_OFFSETS_BASE_INDIRECT;
return NULL;
default:
return binary_buffer_error(bb,
"unknown attribute form %#" PRIx64 " for DW_AT_str_offsets_base",
form);
}
}
static struct drgn_error *
dw_at_stmt_list_to_insn(struct drgn_dwarf_index_cu *cu,
struct binary_buffer *bb, uint64_t form,
uint8_t *insn_ret)
{
switch (form) {
case DW_FORM_data4:
*insn_ret = INSN_STMT_LIST_LINEPTR4;
return NULL;
case DW_FORM_data8:
*insn_ret = INSN_STMT_LIST_LINEPTR8;
return NULL;
case DW_FORM_sec_offset:
if (cu->is_64_bit)
*insn_ret = INSN_STMT_LIST_LINEPTR8;
else
*insn_ret = INSN_STMT_LIST_LINEPTR4;
return NULL;
case DW_FORM_indirect:
*insn_ret = INSN_STMT_LIST_INDIRECT;
return NULL;
default:
return binary_buffer_error(bb,
"unknown attribute form %#" PRIx64 " for DW_AT_stmt_list",
form);
}
}
static struct drgn_error *dw_at_decl_file_to_insn(struct binary_buffer *bb,
uint64_t form,
uint8_t *insn_ret,
uint64_t *implicit_const_ret)
{
switch (form) {
case DW_FORM_data1:
*insn_ret = INSN_DECL_FILE_DATA1;
return NULL;
case DW_FORM_data2:
*insn_ret = INSN_DECL_FILE_DATA2;
return NULL;
case DW_FORM_data4:
*insn_ret = INSN_DECL_FILE_DATA4;
return NULL;
case DW_FORM_data8:
*insn_ret = INSN_DECL_FILE_DATA8;
return NULL;
/*
* decl_file must be positive, so if the compiler uses
* DW_FORM_sdata for some reason, just treat it as udata.
*/
case DW_FORM_sdata:
case DW_FORM_udata:
*insn_ret = INSN_DECL_FILE_UDATA;
return NULL;
case DW_FORM_implicit_const:
*insn_ret = INSN_DECL_FILE_IMPLICIT;
return binary_buffer_next_uleb128(bb, implicit_const_ret);
case DW_FORM_indirect:
*insn_ret = INSN_DECL_FILE_INDIRECT;
return NULL;
default:
return binary_buffer_error(bb,
"unknown attribute form %#" PRIx64 " for DW_AT_decl_file",
form);
}
}
static struct drgn_error *
dw_at_declaration_to_insn(struct binary_buffer *bb, uint64_t form,
uint8_t *insn_ret, uint8_t *die_flags)
{
switch (form) {
case DW_FORM_flag:
*insn_ret = INSN_DECLARATION_FLAG;
return NULL;
case DW_FORM_flag_present:
/*
* This could be an instruction, but as long as we have a free
* DIE flag bit, we might as well use it.
*/
*insn_ret = 0;
*die_flags |= INSN_DIE_FLAG_DECLARATION;
return NULL;
case DW_FORM_indirect:
*insn_ret = INSN_DECLARATION_INDIRECT;
return NULL;
default:
return binary_buffer_error(bb,
"unknown attribute form %#" PRIx64 " for DW_AT_declaration",
form);
}
}
static struct drgn_error *
dw_at_specification_to_insn(struct drgn_dwarf_index_cu *cu,
struct binary_buffer *bb, uint64_t form,
uint8_t *insn_ret)
{
switch (form) {
case DW_FORM_ref1:
*insn_ret = INSN_SPECIFICATION_REF1;
return NULL;
case DW_FORM_ref2:
*insn_ret = INSN_SPECIFICATION_REF2;
return NULL;
case DW_FORM_ref4:
*insn_ret = INSN_SPECIFICATION_REF4;
return NULL;
case DW_FORM_ref8:
*insn_ret = INSN_SPECIFICATION_REF8;
return NULL;
case DW_FORM_ref_udata:
*insn_ret = INSN_SPECIFICATION_REF_UDATA;
return NULL;
case DW_FORM_ref_addr:
if (cu->version >= 3) {
if (cu->is_64_bit)
*insn_ret = INSN_SPECIFICATION_REF_ADDR8;
else
*insn_ret = INSN_SPECIFICATION_REF_ADDR4;
} else {
if (cu->address_size == 8)
*insn_ret = INSN_SPECIFICATION_REF_ADDR8;
else if (cu->address_size == 4)
*insn_ret = INSN_SPECIFICATION_REF_ADDR4;
else
return binary_buffer_error(bb,
"unsupported address size %" PRIu8 " for DW_FORM_ref_addr",
cu->address_size);
}
return NULL;
case DW_FORM_GNU_ref_alt:
if (!cu->module->alt_debug_info_data) {
return binary_buffer_error(bb,
"DW_FORM_GNU_ref_alt without alternate .debug_info section");
}
if (cu->is_64_bit)
*insn_ret = INSN_SPECIFICATION_REF_ALT8;
else
*insn_ret = INSN_SPECIFICATION_REF_ALT4;
return NULL;
case DW_FORM_indirect:
*insn_ret = INSN_SPECIFICATION_INDIRECT;
return NULL;
default:
return binary_buffer_error(bb,
"unknown attribute form %#" PRIx64 " for DW_AT_specification",
form);
}
}
static bool append_uleb128(struct uint8_vector *insns, uint64_t value)
{
do {
uint8_t byte = value & 0x7f;
value >>= 7;
if (value != 0)
byte |= 0x80;
if (!uint8_vector_append(insns, &byte))
return false;
} while (value != 0);
return true;
}
static struct drgn_error *
read_abbrev_decl(struct drgn_debug_info_buffer *buffer,
struct drgn_dwarf_index_cu *cu, struct uint32_vector *decls,
struct uint8_vector *insns)
{
struct drgn_error *err;
uint64_t code;
if ((err = binary_buffer_next_uleb128(&buffer->bb, &code)))
return err;
if (code == 0)
return &drgn_stop;
if (code != decls->size + 1) {
return binary_buffer_error(&buffer->bb,
"DWARF abbrevation table is not sequential");
}
uint32_t insn_index = insns->size;
if (!uint32_vector_append(decls, &insn_index))
return &drgn_enomem;
uint64_t tag;
if ((err = binary_buffer_next_uleb128(&buffer->bb, &tag)))
return err;
bool should_index;
switch (tag) {
/* Types. */
case DW_TAG_base_type:
case DW_TAG_class_type:
case DW_TAG_enumeration_type:
case DW_TAG_structure_type:
case DW_TAG_typedef:
case DW_TAG_union_type:
/* Variables. */
case DW_TAG_variable:
/* Constants. */
case DW_TAG_enumerator:
/* Functions. */
case DW_TAG_subprogram:
/* Namespaces */
case DW_TAG_namespace:
/* If adding anything here, make sure it fits in INSN_DIE_FLAG_TAG_MASK. */
should_index = true;
break;
default:
should_index = false;
break;
}
uint8_t die_flags = should_index ? tag : 0;
uint8_t children;
if ((err = binary_buffer_next_u8(&buffer->bb, &children)))
return err;
if (children)
die_flags |= INSN_DIE_FLAG_CHILDREN;
uint8_t insn, last_insn = UINT8_MAX;
for (;;) {
uint64_t name, form;
uint64_t implicit_const;
if ((err = binary_buffer_next_uleb128(&buffer->bb, &name)))
return err;
if ((err = binary_buffer_next_uleb128(&buffer->bb, &form)))
return err;
if (name == 0 && form == 0)
break;
if (name == DW_AT_sibling) {
err = dw_at_sibling_to_insn(&buffer->bb, form, &insn);
} else if (name == DW_AT_name && should_index) {
err = dw_at_name_to_insn(cu, &buffer->bb, form, &insn);
} else if (name == DW_AT_comp_dir) {
err = dw_at_comp_dir_to_insn(cu, &buffer->bb, form,
&insn);
} else if (name == DW_AT_str_offsets_base) {
if (!cu->module->scn_data[DRGN_SCN_DEBUG_STR_OFFSETS]) {
return binary_buffer_error(&buffer->bb,
"DW_AT_str_offsets_base without .debug_str_offsets section");
}
err = dw_at_str_offsets_base_to_insn(cu, &buffer->bb,
form, &insn);
} else if (name == DW_AT_stmt_list) {
if (!cu->module->scn_data[DRGN_SCN_DEBUG_LINE]) {
return binary_buffer_error(&buffer->bb,
"DW_AT_stmt_list without .debug_line section");
}
err = dw_at_stmt_list_to_insn(cu, &buffer->bb, form,
&insn);
} else if (name == DW_AT_decl_file && should_index &&
/* Namespaces are merged, so we ignore their file. */
tag != DW_TAG_namespace) {
err = dw_at_decl_file_to_insn(&buffer->bb, form, &insn,
&implicit_const);
} else if (name == DW_AT_declaration && should_index) {
err = dw_at_declaration_to_insn(&buffer->bb, form,
&insn, &die_flags);
} else if (name == DW_AT_specification && should_index) {
err = dw_at_specification_to_insn(cu, &buffer->bb, form,
&insn);
} else {
err = dw_form_to_insn(cu, &buffer->bb, form, &insn);
}
if (err)
return err;
if (insn != 0) {
if (insn <= INSN_MAX_SKIP) {
if (last_insn + insn <= INSN_MAX_SKIP) {
insns->data[insns->size - 1] += insn;
continue;
} else if (last_insn < INSN_MAX_SKIP) {
insn = last_insn + insn - INSN_MAX_SKIP;
insns->data[insns->size - 1] = INSN_MAX_SKIP;
}
}
last_insn = insn;
if (!uint8_vector_append(insns, &insn))
return &drgn_enomem;
if (insn == INSN_DECL_FILE_IMPLICIT &&
!append_uleb128(insns, implicit_const))
return &drgn_enomem;
}
}
insn = INSN_END;
if (!uint8_vector_append(insns, &insn) ||
!uint8_vector_append(insns, &die_flags))
return &drgn_enomem;
return NULL;
}
static struct drgn_error *read_abbrev_table(struct drgn_dwarf_index_cu *cu,
size_t debug_abbrev_offset)
{
struct drgn_debug_info_buffer buffer;
drgn_debug_info_buffer_init(&buffer, cu->module, DRGN_SCN_DEBUG_ABBREV);
/* Checked in read_cu(). */
buffer.bb.pos += debug_abbrev_offset;
struct uint32_vector decls = VECTOR_INIT;
struct uint8_vector insns = VECTOR_INIT;
for (;;) {
struct drgn_error *err = read_abbrev_decl(&buffer, cu, &decls,
&insns);
if (err == &drgn_stop) {
break;
} else if (err) {
uint8_vector_deinit(&insns);
uint32_vector_deinit(&decls);
return err;
}
}
uint8_vector_shrink_to_fit(&insns);
uint32_vector_shrink_to_fit(&decls);
cu->abbrev_decls = decls.data;
cu->num_abbrev_decls = decls.size;
cu->abbrev_insns = insns.data;
return NULL;
}
/* Get the size of a unit header beyond that of a normal compilation unit. */
static size_t cu_header_extra_size(struct drgn_dwarf_index_cu *cu)
{
switch (cu->unit_type) {
case DW_UT_compile:
case DW_UT_partial:
return 0;
case DW_UT_skeleton:
case DW_UT_split_compile:
/* dwo_id */
return 8;
case DW_UT_type:
case DW_UT_split_type:
/* type_signature and type_offset */
return cu->is_64_bit ? 16 : 12;
default:
UNREACHABLE();
}
}
static size_t cu_header_size(struct drgn_dwarf_index_cu *cu)
{
size_t size = cu->is_64_bit ? 23 : 11;
if (cu->version >= 5)
size++;
size += cu_header_extra_size(cu);
return size;
}
static struct drgn_error *read_cu(struct drgn_dwarf_index_cu_buffer *buffer)
{
struct drgn_error *err;
buffer->bb.pos += buffer->cu->is_64_bit ? 12 : 4;
uint16_t version;
if ((err = binary_buffer_next_u16(&buffer->bb, &version)))
return err;
if (version < 2 || version > 5) {
return binary_buffer_error(&buffer->bb,
"unknown DWARF CU version %" PRIu16,
version);
}
buffer->cu->version = version;
if (version >= 5) {
if ((err = binary_buffer_next_u8(&buffer->bb,
&buffer->cu->unit_type)))
return err;
if (buffer->cu->unit_type < DW_UT_compile ||
buffer->cu->unit_type > DW_UT_split_type) {
return binary_buffer_error(&buffer->bb,
"unknown DWARF unit type");
}
} else if (buffer->cu->scn == DRGN_SCN_DEBUG_TYPES) {
buffer->cu->unit_type = DW_UT_type;
} else {
buffer->cu->unit_type = DW_UT_compile;
}
if (version >= 5 &&
(err = binary_buffer_next_u8(&buffer->bb,
&buffer->cu->address_size)))
return err;
uint64_t debug_abbrev_offset;
if (buffer->cu->is_64_bit) {
if ((err = binary_buffer_next_u64(&buffer->bb,
&debug_abbrev_offset)))
return err;
} else {
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&debug_abbrev_offset)))
return err;
}
if (debug_abbrev_offset >
buffer->cu->module->scn_data[DRGN_SCN_DEBUG_ABBREV]->d_size) {
return binary_buffer_error(&buffer->bb,
"debug_abbrev_offset is out of bounds");
}
if (version < 5 &&
(err = binary_buffer_next_u8(&buffer->bb,
&buffer->cu->address_size)))
return err;
if (buffer->cu->address_size > 8) {
return binary_buffer_error(&buffer->bb,
"unsupported address size %" PRIu8,
buffer->cu->address_size);
}
if ((err = binary_buffer_skip(&buffer->bb,
cu_header_extra_size(buffer->cu))))
return err;
return read_abbrev_table(buffer->cu, debug_abbrev_offset);
}
static struct drgn_error *read_strx(struct drgn_dwarf_index_cu_buffer *buffer,
uint64_t strx, const char **ret)
{
if (!buffer->cu->str_offsets) {
return binary_buffer_error(&buffer->bb,
"string index without DW_AT_str_offsets_base");
}
Elf_Data *debug_str_offsets =
buffer->cu->module->scn_data[DRGN_SCN_DEBUG_STR_OFFSETS];
size_t offset_size = buffer->cu->is_64_bit ? 8 : 4;
if (((char *)debug_str_offsets->d_buf + debug_str_offsets->d_size
- buffer->cu->str_offsets)
/ offset_size <= strx) {
return binary_buffer_error(&buffer->bb,
"string index out of bounds");
}
uint64_t strp;
if (buffer->cu->is_64_bit) {
memcpy(&strp, (uint64_t *)buffer->cu->str_offsets + strx,
sizeof(strp));
if (buffer->bb.bswap)
strp = bswap_64(strp);
} else {
uint32_t strp32;
memcpy(&strp32, (uint32_t *)buffer->cu->str_offsets + strx,
sizeof(strp32));
if (buffer->bb.bswap)
strp32 = bswap_32(strp32);
strp = strp32;
}
if (strp >= buffer->cu->module->scn_data[DRGN_SCN_DEBUG_STR]->d_size) {
return binary_buffer_error(&buffer->bb,
"indirect string is out of bounds");
}
*ret = ((char *)buffer->cu->module->scn_data[DRGN_SCN_DEBUG_STR]->d_buf
+ strp);
return NULL;
}
static struct drgn_error *read_lnp_header(struct drgn_debug_info_buffer *buffer,
bool *is_64_bit_ret, int *version_ret)
{
struct drgn_error *err;
uint32_t tmp;
if ((err = binary_buffer_next_u32(&buffer->bb, &tmp)))
return err;
bool is_64_bit = tmp == UINT32_C(0xffffffff);
if (is_64_bit &&
(err = binary_buffer_skip(&buffer->bb, sizeof(uint64_t))))
return err;
*is_64_bit_ret = is_64_bit;
uint16_t version;
if ((err = binary_buffer_next_u16(&buffer->bb, &version)))
return err;
if (version < 2 || version > 5) {
return binary_buffer_error(&buffer->bb,
"unknown DWARF LNP version %" PRIu16,
version);
}
*version_ret = version;
uint8_t opcode_base;
if ((err = binary_buffer_skip(&buffer->bb,
/* address_size + segment_selector_size */
+ (version >= 5 ? 2 : 0)
+ (is_64_bit ? 8 : 4) /* header_length */
+ 1 /* minimum_instruction_length */
+ (version >= 4) /* maximum_operations_per_instruction */
+ 1 /* default_is_stmt */
+ 1 /* line_base */
+ 1 /* line_range */)) ||
(err = binary_buffer_next_u8(&buffer->bb, &opcode_base)) ||
(err = binary_buffer_skip(&buffer->bb, opcode_base - 1)))
return err;
return NULL;
}
/**
* Cached hash of file path.
*
* File names in the DWARF line number program header consist of three parts:
* the compilation directory path, the directory path, and the file name.
* Multiple file names may be relative to the same directory, and relative
* directory paths are all relative to the compilation directory.
*
* We'd like to hash DWARF file names to a unique hash so that we can
* deduplicate definitions without comparing full paths.
*
* The naive way to hash a DWARF file name entry would be to join and normalize
* the compilation directory path, directory path, and file name, and hash that.
* But this would involve a lot of redundant computations since most paths will
* have common prefixes. Instead, we cache the hashes of each directory path and
* update the hash for relative paths.
*
* It is not sufficient to cache the final hash for each directory because ".."
* components may require us to use the hash of a parent directory. So, we also
* cache the hash of every parent directory in a linked list.
*
* We use the FNV-1a hash function. Although FNV-1a is
* [known](https://github.com/rurban/smhasher/blob/master/doc/FNV1a.txt) to have
* some hash quality problems, it is sufficient for producing unique 64-bit
* hashes of file names. It has a couple of advantages over "better" hash
* functions:
*
* 1. Its only internal state is the 64-bit hash value, which keeps this
* structure small.
* 2. It operates byte-by-byte, which works well for incrementally hashing lots
* of short path components.
*/
struct path_hash {
/** Hash of this path. */
uint64_t hash;
/**
* Tagged pointer comprising `struct path_hash *` of parent directory
* and flag in lowest-order bit specifying whether this path ends in a
* ".." component.
*/
uintptr_t parent_and_is_dot_dot;
};
#define FNV_OFFSET_BASIS_64 UINT64_C(0xcbf29ce484222325)
#define FNV_PRIME_64 UINT64_C(0x00000100000001b3)
static inline void path_hash_update(struct path_hash *path_hash,
const void *src, size_t len)
{
const uint8_t *s = src, *end = s + len;
uint64_t hash = path_hash->hash;
while (s < end) {
hash ^= *(s++);
hash *= FNV_PRIME_64;
}
path_hash->hash = hash;
}
/** Path hash of "" (empty string). */
static const struct path_hash empty_path_hash = { FNV_OFFSET_BASIS_64 };
/** Path hash of "/". */
static const struct path_hash absolute_path_hash = {
(FNV_OFFSET_BASIS_64 ^ '/') * FNV_PRIME_64,
};
static inline const struct path_hash *
path_hash_parent(const struct path_hash *path_hash)
{
return (struct path_hash *)(path_hash->parent_and_is_dot_dot
& ~(uintptr_t)1);
}
static inline bool path_hash_is_dot_dot(const struct path_hash *path_hash)
{
return path_hash->parent_and_is_dot_dot & 1;
}
/** Chunk of allocated @ref path_hash objects. See @ref path_hash_cache. */
struct path_hash_chunk {
struct path_hash objects[(4096 - sizeof(struct path_hash_chunk *))
/ sizeof(struct path_hash)];
struct path_hash_chunk *next;
};
DEFINE_VECTOR(path_hash_vector, const struct path_hash *)
struct lnp_entry_format {
uint64_t content_type;
uint64_t form;
};
static const struct lnp_entry_format dwarf4_directory_entry_formats[] = {
{ DW_LNCT_path, DW_FORM_string },
};
static const struct lnp_entry_format dwarf4_file_name_entry_formats[] = {
{ DW_LNCT_path, DW_FORM_string },
{ DW_LNCT_directory_index, DW_FORM_udata },
{ DW_LNCT_timestamp, DW_FORM_udata },
{ DW_LNCT_size, DW_FORM_udata },
};
/**
* Cache of hashed file paths.
*
* This uses a bump allocator for @ref path_hash objects. @ref path_hash objects
* are allocated sequentially out of a @ref path_hash_chunk; when a chunk is
* exhausted, a new @ref path_hash_chunk is allocated from the heap. The
* allocated chunks are kept and reused for each DWARF line number program; they
* are freed at the end of the first indexing pass.
*
* This also caches the allocations for directory hashes and line number program
* header entry formats.
*/
struct path_hash_cache {
/** Next @ref path_hash object to be allocated. */
struct path_hash *next_object;
/** @ref path_hash_chunk currently being allocated from. */
struct path_hash_chunk *current_chunk;
/** First allocated @ref path_hash_chunk. */
struct path_hash_chunk *first_chunk;
/** Hashed directory paths. */
struct path_hash_vector directories;
/** Line number program header entry formats. */
struct lnp_entry_format *entry_formats;
/** Allocated size of @ref path_hash_cache::entry_formats. */
size_t entry_formats_capacity;
};
static struct path_hash *path_hash_alloc(struct path_hash_cache *cache)
{
struct path_hash_chunk *current_chunk = cache->current_chunk;
if (cache->next_object <
&current_chunk->objects[array_size(current_chunk->objects)])
return cache->next_object++;
struct path_hash_chunk *next_chunk = current_chunk->next;
if (!next_chunk) {
next_chunk = malloc(sizeof(*next_chunk));
if (!next_chunk)
return NULL;
next_chunk->next = NULL;
current_chunk->next = next_chunk;
}
cache->current_chunk = next_chunk;
cache->next_object = &next_chunk->objects[1];
return next_chunk->objects;
}
static inline bool is_dot_dot(const char *component, size_t component_len)
{
return component_len == 2 && component[0] == '.' && component[1] == '.';
}
static const struct path_hash *hash_path(struct path_hash_cache *cache,
const char *path,
const struct path_hash *path_hash)
{
const char *p = path;
if (*p == '/') {
path_hash = &absolute_path_hash;
p++;
}
while (*p != '\0') {
const char *component = p;
p = strchrnul(p, '/');
size_t component_len = p - component;
if (*p == '/')
p++;
if (component_len == 0 ||
(component_len == 1 && component[0] == '.')) {
} else if (!is_dot_dot(component, component_len) ||
path_hash == &empty_path_hash ||
path_hash_is_dot_dot(path_hash)) {
struct path_hash *new_path_hash = path_hash_alloc(cache);
if (!new_path_hash)
return NULL;
new_path_hash->hash = path_hash->hash;
if (path_hash->parent_and_is_dot_dot != 0)
path_hash_update(new_path_hash, "/", 1);
path_hash_update(new_path_hash, component,
component_len);
new_path_hash->parent_and_is_dot_dot =
((uintptr_t)path_hash |
is_dot_dot(component, component_len));
path_hash = new_path_hash;
} else if (path_hash != &absolute_path_hash) {
path_hash = path_hash_parent(path_hash);
}
}
return path_hash;
}
static struct drgn_error *
read_lnp_entry_formats(struct drgn_debug_info_buffer *buffer,
struct path_hash_cache *cache, int *count_ret)
{
struct drgn_error *err;
uint8_t count;
if ((err = binary_buffer_next_u8(&buffer->bb, &count)))
return err;
if (count > cache->entry_formats_capacity) {
free(cache->entry_formats);
cache->entry_formats = malloc_array(count,
sizeof(cache->entry_formats[0]));
if (!cache->entry_formats) {
cache->entry_formats_capacity = 0;
return &drgn_enomem;
}
cache->entry_formats_capacity = count;
}
bool have_path = false;
for (int i = 0; i < count; i++) {
if ((err = binary_buffer_next_uleb128(&buffer->bb,
&cache->entry_formats[i].content_type)))
return err;
if (cache->entry_formats[i].content_type == DW_LNCT_path)
have_path = true;
if ((err = binary_buffer_next_uleb128(&buffer->bb,
&cache->entry_formats[i].form)))
return err;
}
if (!have_path) {
return binary_buffer_error(&buffer->bb,
"DWARF line number program header entry does not include DW_LNCT_path");
}
*count_ret = count;
return NULL;
}
static struct drgn_error *skip_lnp_form(struct binary_buffer *bb,
bool is_64_bit, uint64_t form)
{
struct drgn_error *err;
uint64_t skip;
switch (form) {
case DW_FORM_block:
if ((err = binary_buffer_next_uleb128(bb, &skip)))
return err;
block:
return binary_buffer_skip(bb, skip);
case DW_FORM_block1:
if ((err = binary_buffer_next_u8_into_u64(bb, &skip)))
return err;
goto block;
case DW_FORM_block2:
if ((err = binary_buffer_next_u16_into_u64(bb, &skip)))
return err;
goto block;
case DW_FORM_block4:
if ((err = binary_buffer_next_u32_into_u64(bb, &skip)))
return err;
goto block;
case DW_FORM_data1:
case DW_FORM_flag:
case DW_FORM_strx1:
return binary_buffer_skip(bb, 1);
case DW_FORM_data2:
case DW_FORM_strx2:
return binary_buffer_skip(bb, 2);
case DW_FORM_strx3:
return binary_buffer_skip(bb, 3);
case DW_FORM_data4:
case DW_FORM_strx4:
return binary_buffer_skip(bb, 4);
case DW_FORM_data8:
return binary_buffer_skip(bb, 8);
case DW_FORM_data16:
return binary_buffer_skip(bb, 16);
case DW_FORM_line_strp:
case DW_FORM_sec_offset:
case DW_FORM_strp:
return binary_buffer_skip(bb, is_64_bit ? 8 : 4);
case DW_FORM_sdata:
case DW_FORM_strx:
case DW_FORM_udata:
return binary_buffer_skip_leb128(bb);
case DW_FORM_string:
return binary_buffer_skip_string(bb);
default:
return binary_buffer_error(bb,
"unknown attribute form %#" PRIx64 " for line number program",
form);
}
}
static struct drgn_error *read_lnp_string(struct drgn_debug_info_buffer *buffer,
bool is_64_bit, uint64_t form,
const char **ret)
{
struct drgn_error *err;
uint64_t strp;
Elf_Data *data;
switch (form) {
case DW_FORM_string:
*ret = buffer->bb.pos;
return binary_buffer_skip_string(&buffer->bb);
case DW_FORM_line_strp:
case DW_FORM_strp:
if (is_64_bit)
err = binary_buffer_next_u64(&buffer->bb, &strp);
else
err = binary_buffer_next_u32_into_u64(&buffer->bb, &strp);
if (err)
return err;
data = buffer->module->scn_data[
form == DW_FORM_line_strp ?
DRGN_SCN_DEBUG_LINE_STR : DRGN_SCN_DEBUG_STR];
if (!data || strp >= data->d_size) {
return binary_buffer_error(&buffer->bb,
"DW_LNCT_path is out of bounds");
}
*ret = (const char *)data->d_buf + strp;
return NULL;
default:
return binary_buffer_error(&buffer->bb,
"unknown attribute form %#" PRIx64 " for DW_LNCT_path",
form);
}
}
static struct drgn_error *
read_lnp_directory_index(struct drgn_debug_info_buffer *buffer, uint64_t form,
uint64_t *ret)
{
switch (form) {
case DW_FORM_data1:
return binary_buffer_next_u8_into_u64(&buffer->bb, ret);
case DW_FORM_data2:
return binary_buffer_next_u16_into_u64(&buffer->bb, ret);
case DW_FORM_udata:
return binary_buffer_next_uleb128(&buffer->bb, ret);
default:
return binary_buffer_error(&buffer->bb,
"unknown attribute form %#" PRIx64 " for DW_LNCT_directory_index",
form);
}
}
static struct drgn_error *read_file_name_table(struct path_hash_cache *cache,
struct drgn_dwarf_index_cu *cu,
const char *comp_dir,
size_t stmt_list)
{
struct drgn_error *err;
struct drgn_debug_info_buffer buffer;
drgn_debug_info_buffer_init(&buffer, cu->module, DRGN_SCN_DEBUG_LINE);
/* Checked in index_cu_first_pass(). */
buffer.bb.pos += stmt_list;
bool is_64_bit;
int version;
if ((err = read_lnp_header(&buffer, &is_64_bit, &version)))
return err;
cache->current_chunk = cache->first_chunk;
cache->next_object = cache->first_chunk->objects;
cache->directories.size = 0;
const struct lnp_entry_format *entry_formats;
int entry_format_count;
uint64_t entry_count = 0; /* For -Wmaybe-uninitialized. */
const struct path_hash *path_hash, *parent;
if (version >= 5) {
if ((err = read_lnp_entry_formats(&buffer, cache,
&entry_format_count)))
return err;
entry_formats = cache->entry_formats;
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&entry_count)))
return err;
if (entry_count > SIZE_MAX ||
!path_hash_vector_reserve(&cache->directories, entry_count))
return err;
parent = &empty_path_hash;
} else {
entry_formats = dwarf4_directory_entry_formats;
entry_format_count = array_size(dwarf4_directory_entry_formats);
path_hash = hash_path(cache, comp_dir, &empty_path_hash);
if (!path_hash ||
!path_hash_vector_append(&cache->directories, &path_hash))
return &drgn_enomem;
parent = path_hash;
}
while (version < 5 || entry_count-- > 0) {
const char *path;
for (int j = 0; j < entry_format_count; j++) {
if (entry_formats[j].content_type == DW_LNCT_path) {
err = read_lnp_string(&buffer, is_64_bit,
entry_formats[j].form,
&path);
if (version < 5 && path[0] == '\0')
goto file_name_entries;
} else {
err = skip_lnp_form(&buffer.bb, is_64_bit,
entry_formats[j].form);
}
if (err)
return err;
}
path_hash = hash_path(cache, path, parent);
if (!path_hash ||
!path_hash_vector_append(&cache->directories, &path_hash))
return &drgn_enomem;
parent = cache->directories.data[0];
}
file_name_entries:;
/*
* File name 0 needs special treatment. In DWARF 2-4, file name entries
* are numbered starting at 1, and a DW_AT_decl_file of 0 indicates that
* no file was specified. In DWARF 5, file name entries are numbered
* starting at 0, and entry 0 is the current compilation file name. The
* DWARF 5 specification still states that a DW_AT_decl_file of 0
* indicates that no file was specified, but some producers (including
* Clang) and consumers (including elfutils and GDB) treat a
* DW_AT_decl_file of 0 as specifying the current compilation file name,
* so we do the same.
*
* So, for DWARF 5, we hash entry 0 as usual, and for DWARF 4, we insert
* a placeholder for entry 0. If there are no file names at all, we keep
* the no_file_name_hashes placeholder.
*/
struct uint64_vector file_name_hashes;
if (version >= 5) {
if ((err = read_lnp_entry_formats(&buffer, cache,
&entry_format_count)))
return err;
entry_formats = cache->entry_formats;
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&entry_count)))
return err;
if (entry_count == 0)
return NULL;
if (entry_count > SIZE_MAX)
return &drgn_enomem;
uint64_vector_init(&file_name_hashes);
if (!uint64_vector_reserve(&file_name_hashes, entry_count)) {
err = &drgn_enomem;
goto err;
}
} else {
entry_formats = dwarf4_file_name_entry_formats;
entry_format_count = array_size(dwarf4_file_name_entry_formats);
uint64_vector_init(&file_name_hashes);
}
while (version < 5 || entry_count-- > 0) {
const char *path;
uint64_t directory_index = 0;
for (int j = 0; j < entry_format_count; j++) {
if (entry_formats[j].content_type == DW_LNCT_path) {
err = read_lnp_string(&buffer, is_64_bit,
entry_formats[j].form,
&path);
if (!err && version < 5) {
if (path[0] == '\0') {
if (file_name_hashes.size == 0) {
uint64_vector_deinit(&file_name_hashes);
return NULL;
}
goto done;
} else if (file_name_hashes.size == 0) {
uint64_t zero = 0;
if (!uint64_vector_append(&file_name_hashes,
&zero)) {
err = &drgn_enomem;
goto err;
}
}
}
} else if (entry_formats[j].content_type ==
DW_LNCT_directory_index) {
err = read_lnp_directory_index(&buffer,
entry_formats[j].form,
&directory_index);
} else {
err = skip_lnp_form(&buffer.bb, is_64_bit,
entry_formats[j].form);
}
if (err)
goto err;
}
if (directory_index >= cache->directories.size) {
err = binary_buffer_error(&buffer.bb,
"directory index %" PRIu64 " is invalid",
directory_index);
goto err;
}
struct path_hash *prev_object = cache->next_object;
struct path_hash_chunk *prev_chunk = cache->current_chunk;
path_hash = hash_path(cache, path,
cache->directories.data[directory_index]);
if (!path_hash ||
!uint64_vector_append(&file_name_hashes, &path_hash->hash)) {
err = &drgn_enomem;
goto err;
}
/* "Free" the objects allocated for this file name. */
cache->next_object = prev_object;
cache->current_chunk = prev_chunk;
}
done:
uint64_vector_shrink_to_fit(&file_name_hashes);
cu->file_name_hashes = file_name_hashes.data;
cu->num_file_names = file_name_hashes.size;
return NULL;
err:
uint64_vector_deinit(&file_name_hashes);
return err;
}
static struct drgn_error *
index_specification(struct drgn_debug_info *dbinfo, uintptr_t declaration,
struct drgn_debug_info_module *module, uintptr_t addr)
{
struct drgn_dwarf_specification entry = {
.declaration = declaration,
.module = module,
.addr = addr,
};
struct hash_pair hp = drgn_dwarf_specification_map_hash(&declaration);
int ret;
#pragma omp critical(drgn_index_specification)
ret = drgn_dwarf_specification_map_insert_hashed(&dbinfo->dwarf.specifications,
&entry, hp,
NULL);
/*
* There may be duplicates if multiple DIEs reference one declaration,
* but we ignore them.
*/
return ret < 0 ? &drgn_enomem : NULL;
}
static struct drgn_error *read_indirect_insn(struct drgn_dwarf_index_cu *cu,
struct binary_buffer *bb,
uint8_t insn, uint8_t *insn_ret,
uint8_t *die_flags)
{
struct drgn_error *err;
uint64_t form;
if ((err = binary_buffer_next_uleb128(bb, &form)))
return err;
if (form == DW_FORM_implicit_const) {
return binary_buffer_error(bb,
"DW_FORM_implicit_const in DW_FORM_indirect");
}
switch (insn) {
case INSN_INDIRECT:
return dw_form_to_insn(cu, bb, form, insn_ret);
case INSN_SIBLING_INDIRECT:
return dw_at_sibling_to_insn(bb, form, insn_ret);
case INSN_NAME_INDIRECT:
return dw_at_name_to_insn(cu, bb, form, insn_ret);
case INSN_COMP_DIR_INDIRECT:
return dw_at_comp_dir_to_insn(cu, bb, form, insn_ret);
case INSN_STR_OFFSETS_BASE_INDIRECT:
return dw_at_str_offsets_base_to_insn(cu, bb, form, insn_ret);
case INSN_STMT_LIST_INDIRECT:
return dw_at_stmt_list_to_insn(cu, bb, form, insn_ret);
case INSN_DECL_FILE_INDIRECT:
return dw_at_decl_file_to_insn(bb, form, insn_ret, NULL);
case INSN_DECLARATION_INDIRECT:
return dw_at_declaration_to_insn(bb, form, insn_ret, die_flags);
case INSN_SPECIFICATION_INDIRECT:
return dw_at_specification_to_insn(cu, bb, form, insn_ret);
default:
UNREACHABLE();
}
}
/*
* First pass: read the file name tables and index DIEs with
* DW_AT_specification. This recurses into namespaces.
*/
static struct drgn_error *
index_cu_first_pass(struct drgn_debug_info *dbinfo,
struct drgn_dwarf_index_cu_buffer *buffer,
struct path_hash_cache *path_hash_cache)
{
/*
* If DW_AT_comp_dir uses a strx* form, we can't read it right away
* because we might not have seen DW_AT_str_offsets_base yet. Rather
* than adding an extra flag to indicate that we need to read it later,
* we set comp_dir to this sentinel value.
*/
static const char comp_dir_is_strx;
struct drgn_error *err;
struct drgn_dwarf_index_cu *cu = buffer->cu;
const char *debug_info_buffer = cu->module->scn_data[cu->scn]->d_buf;
unsigned int depth = 0;
for (;;) {
size_t die_addr = (uintptr_t)buffer->bb.pos;
uint64_t code;
if ((err = binary_buffer_next_uleb128(&buffer->bb, &code)))
return err;
if (code == 0) {
if (depth-- > 1)
continue;
else
break;
} else if (code > cu->num_abbrev_decls) {
return binary_buffer_error(&buffer->bb,
"unknown abbreviation code %" PRIu64,
code);
}
uint8_t *insnp = &cu->abbrev_insns[cu->abbrev_decls[code - 1]];
bool declaration = false;
uintptr_t specification = 0;
const char *comp_dir = "";
uint64_t comp_dir_strx;
const char *stmt_list_ptr = NULL;
uint64_t stmt_list;
const char *sibling = NULL;
uint8_t insn;
uint8_t extra_die_flags = 0;
while ((insn = *insnp++) != INSN_END) {
indirect_insn:;
uint64_t skip, tmp;
Elf_Data *strp_scn;
switch (insn) {
case INSN_SKIP_BLOCK:
if ((err = binary_buffer_next_uleb128(&buffer->bb,
&skip)))
return err;
goto skip;
case INSN_SKIP_BLOCK1:
if ((err = binary_buffer_next_u8_into_u64(&buffer->bb,
&skip)))
return err;
goto skip;
case INSN_SKIP_BLOCK2:
if ((err = binary_buffer_next_u16_into_u64(&buffer->bb,
&skip)))
return err;
goto skip;
case INSN_SKIP_BLOCK4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&skip)))
return err;
goto skip;
case INSN_SKIP_LEB128:
case INSN_NAME_STRX:
case INSN_DECL_FILE_UDATA:
if ((err = binary_buffer_skip_leb128(&buffer->bb)))
return err;
break;
case INSN_COMP_DIR_STRING:
comp_dir = buffer->bb.pos;
/* fallthrough */
case INSN_SKIP_STRING:
case INSN_NAME_STRING:
if ((err = binary_buffer_skip_string(&buffer->bb)))
return err;
break;
case INSN_SIBLING_REF1:
if ((err = binary_buffer_next_u8_into_u64(&buffer->bb,
&tmp)))
return err;
goto sibling;
case INSN_SIBLING_REF2:
if ((err = binary_buffer_next_u16_into_u64(&buffer->bb,
&tmp)))
return err;
goto sibling;
case INSN_SIBLING_REF4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&tmp)))
return err;
goto sibling;
case INSN_SIBLING_REF8:
if ((err = binary_buffer_next_u64(&buffer->bb,
&tmp)))
return err;
goto sibling;
case INSN_SIBLING_REF_UDATA:
if ((err = binary_buffer_next_uleb128(&buffer->bb,
&tmp)))
return err;
sibling:
if (tmp > cu->len) {
return binary_buffer_error(&buffer->bb,
"DW_AT_sibling is out of bounds");
}
sibling = cu->buf + tmp;
__builtin_prefetch(sibling);
if (sibling < buffer->bb.pos) {
return binary_buffer_error(&buffer->bb,
"DW_AT_sibling points backwards");
}
break;
case INSN_COMP_DIR_STRP4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&tmp)))
return err;
strp_scn = cu->module->scn_data[DRGN_SCN_DEBUG_STR];
goto comp_dir_strp;
case INSN_COMP_DIR_STRP8:
if ((err = binary_buffer_next_u64(&buffer->bb, &tmp)))
return err;
strp_scn = cu->module->scn_data[DRGN_SCN_DEBUG_STR];
goto comp_dir_strp;
case INSN_COMP_DIR_LINE_STRP4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&tmp)))
return err;
strp_scn = cu->module->scn_data[DRGN_SCN_DEBUG_LINE_STR];
goto comp_dir_strp;
case INSN_COMP_DIR_LINE_STRP8:
if ((err = binary_buffer_next_u64(&buffer->bb, &tmp)))
return err;
strp_scn = cu->module->scn_data[DRGN_SCN_DEBUG_LINE_STR];
comp_dir_strp:
if (tmp >= strp_scn->d_size) {
return binary_buffer_error(&buffer->bb,
"DW_AT_comp_dir is out of bounds");
}
comp_dir = (const char *)strp_scn->d_buf + tmp;
break;
case INSN_COMP_DIR_STRX:
if ((err = binary_buffer_next_uleb128(&buffer->bb,
&comp_dir_strx)))
return err;
comp_dir = &comp_dir_is_strx;
break;
case INSN_COMP_DIR_STRX1:
if ((err = binary_buffer_next_u8_into_u64(&buffer->bb,
&comp_dir_strx)))
return err;
comp_dir = &comp_dir_is_strx;
break;
case INSN_COMP_DIR_STRX2:
if ((err = binary_buffer_next_u16_into_u64(&buffer->bb,
&comp_dir_strx)))
return err;
comp_dir = &comp_dir_is_strx;
break;
case INSN_COMP_DIR_STRX3:
if ((err = binary_buffer_next_uint(&buffer->bb,
3,
&comp_dir_strx)))
return err;
comp_dir = &comp_dir_is_strx;
break;
case INSN_COMP_DIR_STRX4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&comp_dir_strx)))
return err;
comp_dir = &comp_dir_is_strx;
break;
case INSN_COMP_DIR_STRP_ALT4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&tmp)))
return err;
strp_scn = cu->module->alt_debug_str_data;
goto comp_dir_strp;
case INSN_COMP_DIR_STRP_ALT8:
if ((err = binary_buffer_next_u64(&buffer->bb, &tmp)))
return err;
strp_scn = cu->module->alt_debug_str_data;
goto comp_dir_strp;
case INSN_STR_OFFSETS_BASE4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&tmp)))
return err;
goto str_offsets_base;
case INSN_STR_OFFSETS_BASE8:
if ((err = binary_buffer_next_u64(&buffer->bb,
&tmp)))
return err;
str_offsets_base:
if (tmp > cu->module->scn_data[DRGN_SCN_DEBUG_STR_OFFSETS]->d_size) {
return binary_buffer_error(&buffer->bb,
"DW_AT_str_offsets_base is out of bounds");
}
cu->str_offsets =
(char *)cu->module->scn_data[DRGN_SCN_DEBUG_STR_OFFSETS]->d_buf
+ tmp;
break;
case INSN_STMT_LIST_LINEPTR4:
stmt_list_ptr = buffer->bb.pos;
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&stmt_list)))
return err;
break;
case INSN_STMT_LIST_LINEPTR8:
stmt_list_ptr = buffer->bb.pos;
if ((err = binary_buffer_next_u64(&buffer->bb,
&stmt_list)))
return err;
break;
case INSN_NAME_STRX1:
case INSN_DECL_FILE_DATA1:
skip = 1;
goto skip;
case INSN_NAME_STRX2:
case INSN_DECL_FILE_DATA2:
skip = 2;
goto skip;
case INSN_NAME_STRX3:
skip = 3;
goto skip;
case INSN_NAME_STRP4:
case INSN_NAME_STRX4:
case INSN_NAME_STRP_ALT4:
case INSN_DECL_FILE_DATA4:
skip = 4;
goto skip;
case INSN_NAME_STRP8:
case INSN_NAME_STRP_ALT8:
case INSN_DECL_FILE_DATA8:
skip = 8;
goto skip;
case INSN_DECL_FILE_IMPLICIT:
while (*insnp++ & 0x80)
;
break;
case INSN_DECLARATION_FLAG: {
uint8_t flag;
if ((err = binary_buffer_next_u8(&buffer->bb,
&flag)))
return err;
if (flag)
declaration = true;
break;
}
case INSN_SPECIFICATION_REF1:
if ((err = binary_buffer_next_u8_into_u64(&buffer->bb,
&tmp)))
return err;
goto specification;
case INSN_SPECIFICATION_REF2:
if ((err = binary_buffer_next_u16_into_u64(&buffer->bb,
&tmp)))
return err;
goto specification;
case INSN_SPECIFICATION_REF4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&tmp)))
return err;
goto specification;
case INSN_SPECIFICATION_REF8:
if ((err = binary_buffer_next_u64(&buffer->bb,
&tmp)))
return err;
goto specification;
case INSN_SPECIFICATION_REF_UDATA:
if ((err = binary_buffer_next_uleb128(&buffer->bb,
&tmp)))
return err;
specification:
specification = (uintptr_t)cu->buf + tmp;
break;
case INSN_SPECIFICATION_REF_ADDR4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&tmp)))
return err;
goto specification_ref_addr;
case INSN_SPECIFICATION_REF_ADDR8:
if ((err = binary_buffer_next_u64(&buffer->bb,
&tmp)))
return err;
specification_ref_addr:
specification = (uintptr_t)debug_info_buffer + tmp;
break;
case INSN_SPECIFICATION_REF_ALT4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&tmp)))
return err;
goto specification_ref_alt;
case INSN_SPECIFICATION_REF_ALT8:
if ((err = binary_buffer_next_u64(&buffer->bb,
&tmp)))
return err;
specification_ref_alt:
specification = ((uintptr_t)cu->module->alt_debug_info_data->d_buf
+ tmp);
break;
case INSN_INDIRECT:
case INSN_SIBLING_INDIRECT:
case INSN_NAME_INDIRECT:
case INSN_COMP_DIR_INDIRECT:
case INSN_STR_OFFSETS_BASE_INDIRECT:
case INSN_STMT_LIST_INDIRECT:
case INSN_DECL_FILE_INDIRECT:
case INSN_DECLARATION_INDIRECT:
case INSN_SPECIFICATION_INDIRECT:
if ((err = read_indirect_insn(cu, &buffer->bb,
insn, &insn,
&extra_die_flags)))
return err;
if (insn)
goto indirect_insn;
else
continue;
default:
skip = insn;
skip:
if ((err = binary_buffer_skip(&buffer->bb,
skip)))
return err;
break;
}
}
insn = *insnp | extra_die_flags;
if (depth == 0) {
if (stmt_list_ptr) {
if (stmt_list >
cu->module->scn_data[DRGN_SCN_DEBUG_LINE]->d_size) {
return binary_buffer_error_at(&buffer->bb,
stmt_list_ptr,
"DW_AT_stmt_list is out of bounds");
}
if (comp_dir == &comp_dir_is_strx &&
(err = read_strx(buffer, comp_dir_strx,
&comp_dir)))
return err;
if ((err = read_file_name_table(path_hash_cache,
cu, comp_dir,
stmt_list)))
return err;
}
} else if (specification) {
if (insn & INSN_DIE_FLAG_DECLARATION)
declaration = true;
/*
* For now, we don't handle DIEs with
* DW_AT_specification which are themselves
* declarations. We may need to handle
* DW_AT_specification "chains" in the future.
*/
if (!declaration &&
(err = index_specification(dbinfo, specification,
cu->module, die_addr)))
return err;
}
if (insn & INSN_DIE_FLAG_CHILDREN) {
if (sibling &&
(insn & INSN_DIE_FLAG_TAG_MASK) != DW_TAG_namespace)
buffer->bb.pos = sibling;
else
depth++;
} else if (depth == 0) {
break;
}
}
return NULL;
}
/**
* Find a definition corresponding to a declaration DIE.
*
* This finds the address of a DIE with a @c DW_AT_specification attribute that
* refers to the given address.
*
* @param[in] die_addr The address of the declaration DIE.
* @param[out] module_ret Returned module containing the definition DIE.
* @param[out] addr_ret Returned address of the definition DIE.
* @return @c true if a definition DIE was found, @c false if not (in which case
* *@p module_ret and *@p addr_ret are not modified).
*/
static bool
drgn_dwarf_find_definition(struct drgn_debug_info *dbinfo, uintptr_t die_addr,
struct drgn_debug_info_module **module_ret,
uintptr_t *addr_ret)
{
struct drgn_dwarf_specification_map_iterator it =
drgn_dwarf_specification_map_search(&dbinfo->dwarf.specifications,
&die_addr);
if (!it.entry)
return false;
*module_ret = it.entry->module;
*addr_ret = it.entry->addr;
return true;
}
static bool append_die_entry(struct drgn_debug_info *dbinfo,
struct drgn_dwarf_index_shard *shard, uint8_t tag,
uint64_t file_name_hash,
struct drgn_debug_info_module *module,
uintptr_t addr)
{
if (shard->dies.size == UINT32_MAX)
return false;
struct drgn_dwarf_index_die *die =
drgn_dwarf_index_die_vector_append_entry(&shard->dies);
if (!die)
return false;
die->next = UINT32_MAX;
die->tag = tag;
if (die->tag == DW_TAG_namespace) {
die->namespace = malloc(sizeof(*die->namespace));
if (!die->namespace) {
shard->dies.size--;
return false;
}
drgn_namespace_dwarf_index_init(die->namespace, dbinfo);
} else {
die->file_name_hash = file_name_hash;
}
die->module = module;
die->addr = addr;
return true;
}
static bool index_die(struct drgn_namespace_dwarf_index *ns,
struct drgn_dwarf_index_cu *cu, const char *name,
uint8_t tag, uint64_t file_name_hash,
struct drgn_debug_info_module *module, uintptr_t addr)
{
bool success = false;
struct drgn_dwarf_index_die_map_entry entry = {
.key = { name, strlen(name) },
};
struct hash_pair hp = drgn_dwarf_index_die_map_hash(&entry.key);
struct drgn_dwarf_index_shard *shard =
&ns->shards[hash_pair_to_shard(hp)];
omp_set_lock(&shard->lock);
struct drgn_dwarf_index_die_map_iterator it =
drgn_dwarf_index_die_map_search_hashed(&shard->map, &entry.key,
hp);
struct drgn_dwarf_index_die *die;
if (!it.entry) {
if (!append_die_entry(ns->dbinfo, shard, tag, file_name_hash,
module, addr))
goto err;
entry.value = shard->dies.size - 1;
if (drgn_dwarf_index_die_map_insert_searched(&shard->map,
&entry, hp,
NULL) < 0)
goto err;
die = &shard->dies.data[shard->dies.size - 1];
goto out;
}
die = &shard->dies.data[it.entry->value];
for (;;) {
const uint64_t die_file_name_hash =
die->tag == DW_TAG_namespace ? 0 : die->file_name_hash;
if (die->tag == tag && die_file_name_hash == file_name_hash)
goto out;
if (die->next == UINT32_MAX)
break;
die = &shard->dies.data[die->next];
}
size_t index = die - shard->dies.data;
if (!append_die_entry(ns->dbinfo, shard, tag, file_name_hash, module,
addr))
goto err;
die = &shard->dies.data[shard->dies.size - 1];
shard->dies.data[index].next = shard->dies.size - 1;
out:
if (tag == DW_TAG_namespace) {
struct drgn_dwarf_index_pending_die *pending =
drgn_dwarf_index_pending_die_vector_append_entry(&die->namespace->pending_dies);
if (!pending)
goto err;
pending->cu = cu - ns->dbinfo->dwarf.index_cus.data;
pending->addr = addr;
}
success = true;
err:
omp_unset_lock(&shard->lock);
return success;
}
/* Second pass: index the actual DIEs. */
static struct drgn_error *
index_cu_second_pass(struct drgn_namespace_dwarf_index *ns,
struct drgn_dwarf_index_cu_buffer *buffer)
{
struct drgn_error *err;
struct drgn_dwarf_index_cu *cu = buffer->cu;
Elf_Data *debug_str = cu->module->scn_data[DRGN_SCN_DEBUG_STR];
unsigned int depth = 0;
uint8_t depth1_tag = 0;
size_t depth1_addr = 0;
for (;;) {
size_t die_addr = (uintptr_t)buffer->bb.pos;
uint64_t code;
if ((err = binary_buffer_next_uleb128(&buffer->bb, &code)))
return err;
if (code == 0) {
if (depth-- > 1)
continue;
else
break;
} else if (code > cu->num_abbrev_decls) {
return binary_buffer_error(&buffer->bb,
"unknown abbreviation code %" PRIu64,
code);
}
uint8_t *insnp = &cu->abbrev_insns[cu->abbrev_decls[code - 1]];
const char *name = NULL;
const char *decl_file_ptr = NULL;
uint64_t decl_file = 0; /* For -Wmaybe-uninitialized. */
bool declaration = false;
bool specification = false;
const char *sibling = NULL;
uint8_t insn;
uint8_t extra_die_flags = 0;
while ((insn = *insnp++) != INSN_END) {
indirect_insn:;
uint64_t skip, tmp;
switch (insn) {
case INSN_SKIP_BLOCK:
if ((err = binary_buffer_next_uleb128(&buffer->bb,
&skip)))
return err;
goto skip;
case INSN_SKIP_BLOCK1:
if ((err = binary_buffer_next_u8_into_u64(&buffer->bb,
&skip)))
return err;
goto skip;
case INSN_SKIP_BLOCK2:
if ((err = binary_buffer_next_u16_into_u64(&buffer->bb,
&skip)))
return err;
goto skip;
case INSN_SKIP_BLOCK4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&skip)))
return err;
goto skip;
case INSN_SPECIFICATION_REF_UDATA:
specification = true;
/* fallthrough */
case INSN_SKIP_LEB128:
case INSN_COMP_DIR_STRX:
if ((err = binary_buffer_skip_leb128(&buffer->bb)))
return err;
break;
case INSN_NAME_STRING:
name = buffer->bb.pos;
/* fallthrough */
case INSN_SKIP_STRING:
case INSN_COMP_DIR_STRING:
if ((err = binary_buffer_skip_string(&buffer->bb)))
return err;
break;
case INSN_SIBLING_REF1:
if ((err = binary_buffer_next_u8_into_u64(&buffer->bb,
&tmp)))
return err;
goto sibling;
case INSN_SIBLING_REF2:
if ((err = binary_buffer_next_u16_into_u64(&buffer->bb,
&tmp)))
return err;
goto sibling;
case INSN_SIBLING_REF4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&tmp)))
return err;
goto sibling;
case INSN_SIBLING_REF8:
if ((err = binary_buffer_next_u64(&buffer->bb,
&tmp)))
return err;
goto sibling;
case INSN_SIBLING_REF_UDATA:
if ((err = binary_buffer_next_uleb128(&buffer->bb,
&tmp)))
return err;
sibling:
if (tmp > cu->len) {
return binary_buffer_error(&buffer->bb,
"DW_AT_sibling is out of bounds");
}
sibling = cu->buf + tmp;
__builtin_prefetch(sibling);
if (sibling < buffer->bb.pos) {
return binary_buffer_error(&buffer->bb,
"DW_AT_sibling points backwards");
}
break;
case INSN_NAME_STRP4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&tmp)))
return err;
goto strp;
case INSN_NAME_STRP8:
if ((err = binary_buffer_next_u64(&buffer->bb, &tmp)))
return err;
strp:
if (tmp >= debug_str->d_size) {
return binary_buffer_error(&buffer->bb,
"DW_AT_name is out of bounds");
}
name = (const char *)debug_str->d_buf + tmp;
__builtin_prefetch(name);
break;
case INSN_NAME_STRX:
if ((err = binary_buffer_next_uleb128(&buffer->bb,
&tmp)))
return err;
goto name_strx;
case INSN_NAME_STRX1:
if ((err = binary_buffer_next_u8_into_u64(&buffer->bb,
&tmp)))
return err;
goto name_strx;
case INSN_NAME_STRX2:
if ((err = binary_buffer_next_u16_into_u64(&buffer->bb,
&tmp)))
return err;
goto name_strx;
case INSN_NAME_STRX3:
if ((err = binary_buffer_next_uint(&buffer->bb,
3, &tmp)))
return err;
goto name_strx;
case INSN_NAME_STRX4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&tmp)))
return err;
name_strx:
if ((err = read_strx(buffer, tmp, &name)))
return err;
__builtin_prefetch(name);
break;
case INSN_NAME_STRP_ALT4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&tmp)))
return err;
goto name_alt_strp;
case INSN_NAME_STRP_ALT8:
if ((err = binary_buffer_next_u64(&buffer->bb, &tmp)))
return err;
name_alt_strp:
if (tmp >= cu->module->alt_debug_str_data->d_size) {
return binary_buffer_error(&buffer->bb,
"DW_AT_name is out of bounds");
}
name = (const char *)cu->module->alt_debug_str_data->d_buf + tmp;
__builtin_prefetch(name);
break;
case INSN_COMP_DIR_STRP4:
case INSN_COMP_DIR_LINE_STRP4:
case INSN_COMP_DIR_STRP_ALT4:
case INSN_STR_OFFSETS_BASE4:
case INSN_STMT_LIST_LINEPTR4:
skip = 4;
goto skip;
case INSN_COMP_DIR_STRP8:
case INSN_COMP_DIR_LINE_STRP8:
case INSN_COMP_DIR_STRP_ALT8:
case INSN_STR_OFFSETS_BASE8:
case INSN_STMT_LIST_LINEPTR8:
skip = 8;
goto skip;
case INSN_DECL_FILE_DATA1:
decl_file_ptr = buffer->bb.pos;
if ((err = binary_buffer_next_u8_into_u64(&buffer->bb,
&decl_file)))
return err;
break;
case INSN_DECL_FILE_DATA2:
decl_file_ptr = buffer->bb.pos;
if ((err = binary_buffer_next_u16_into_u64(&buffer->bb,
&decl_file)))
return err;
break;
case INSN_DECL_FILE_DATA4:
decl_file_ptr = buffer->bb.pos;
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&decl_file)))
return err;
break;
case INSN_DECL_FILE_DATA8:
decl_file_ptr = buffer->bb.pos;
if ((err = binary_buffer_next_u64(&buffer->bb,
&decl_file)))
return err;
break;
case INSN_DECL_FILE_UDATA:
decl_file_ptr = buffer->bb.pos;
if ((err = binary_buffer_next_uleb128(&buffer->bb,
&decl_file)))
return err;
break;
case INSN_DECL_FILE_IMPLICIT:
decl_file_ptr = buffer->bb.pos;
decl_file = 0;
for (int shift = 0; ; shift += 7) {
uint8_t byte = *insnp++;
decl_file |= (uint64_t)(byte & 0x7f) << shift;
if (!(byte & 0x80))
break;
}
break;
case INSN_DECLARATION_FLAG: {
uint8_t flag;
if ((err = binary_buffer_next_u8(&buffer->bb,
&flag)))
return err;
if (flag)
declaration = true;
break;
}
case INSN_SPECIFICATION_REF1:
specification = true;
/* fallthrough */
case INSN_COMP_DIR_STRX1:
skip = 1;
goto skip;
case INSN_SPECIFICATION_REF2:
specification = true;
/* fallthrough */
case INSN_COMP_DIR_STRX2:
skip = 2;
goto skip;
case INSN_COMP_DIR_STRX3:
skip = 3;
goto skip;
case INSN_SPECIFICATION_REF4:
case INSN_SPECIFICATION_REF_ADDR4:
case INSN_SPECIFICATION_REF_ALT4:
specification = true;
/* fallthrough */
case INSN_COMP_DIR_STRX4:
skip = 4;
goto skip;
case INSN_SPECIFICATION_REF8:
case INSN_SPECIFICATION_REF_ADDR8:
case INSN_SPECIFICATION_REF_ALT8:
specification = true;
skip = 8;
goto skip;
case INSN_INDIRECT:
case INSN_SIBLING_INDIRECT:
case INSN_NAME_INDIRECT:
case INSN_COMP_DIR_INDIRECT:
case INSN_STR_OFFSETS_BASE_INDIRECT:
case INSN_STMT_LIST_INDIRECT:
case INSN_DECL_FILE_INDIRECT:
case INSN_DECLARATION_INDIRECT:
case INSN_SPECIFICATION_INDIRECT:
if ((err = read_indirect_insn(cu, &buffer->bb,
insn, &insn,
&extra_die_flags)))
return err;
if (insn)
goto indirect_insn;
else
continue;
default:
skip = insn;
skip:
if ((err = binary_buffer_skip(&buffer->bb,
skip)))
return err;
break;
}
}
insn = *insnp | extra_die_flags;
uint8_t tag = insn & INSN_DIE_FLAG_TAG_MASK;
if (depth == 1) {
depth1_tag = tag;
depth1_addr = die_addr;
}
if (depth == (tag == DW_TAG_enumerator ? 2 : 1) && name &&
!specification) {
if (insn & INSN_DIE_FLAG_DECLARATION)
declaration = true;
struct drgn_debug_info_module *module = cu->module;
if (tag == DW_TAG_enumerator) {
if (depth1_tag != DW_TAG_enumeration_type)
goto next;
/*
* NB: the enumerator name points to the
* enumeration_type DIE. Also, enumerators can't
* be declared in C/C++, so we don't check for
* that.
*/
die_addr = depth1_addr;
} else if (declaration &&
!drgn_dwarf_find_definition(ns->dbinfo,
die_addr,
&module,
&die_addr)) {
goto next;
}
uint64_t file_name_hash;
if (decl_file_ptr) {
if (decl_file >= cu->num_file_names) {
return binary_buffer_error_at(&buffer->bb,
decl_file_ptr,
"invalid DW_AT_decl_file %" PRIu64,
decl_file);
}
file_name_hash = cu->file_name_hashes[decl_file];
} else {
file_name_hash = 0;
}
if (!index_die(ns, cu, name, tag, file_name_hash,
module, die_addr))
return &drgn_enomem;
}
next:
if (insn & INSN_DIE_FLAG_CHILDREN) {
/*
* We must descend into the children of enumeration_type
* DIEs to index enumerator DIEs. We don't want to skip
* over the children of the top-level DIE even if it has
* a sibling pointer.
*/
if (sibling && tag != DW_TAG_enumeration_type &&
depth > 0)
buffer->bb.pos = sibling;
else
depth++;
} else if (depth == 0) {
break;
}
}
return NULL;
}
static void drgn_dwarf_index_rollback(struct drgn_debug_info *dbinfo)
{
for (size_t i = 0; i < DRGN_DWARF_INDEX_NUM_SHARDS; i++) {
struct drgn_dwarf_index_shard *shard =
&dbinfo->dwarf.global.shards[i];
/*
* Because we're deleting everything that was added since the
* last update, we can just shrink the dies array to the first
* entry that was added for this update.
*/
while (shard->dies.size) {
struct drgn_dwarf_index_die *die =
&shard->dies.data[shard->dies.size - 1];
if (die->module->state ==
DRGN_DEBUG_INFO_MODULE_INDEXED)
break;
if (die->tag == DW_TAG_namespace) {
drgn_namespace_dwarf_index_deinit(die->namespace);
free(die->namespace);
}
shard->dies.size--;
}
/*
* The new entries may be chained off of existing entries;
* unchain them. Note that any entries chained off of the new
* entries must also be new, so there's no need to preserve
* them.
*/
for (size_t index = 0; index < shard->dies.size; index++) {
struct drgn_dwarf_index_die *die =
&shard->dies.data[index];
if (die->next != UINT32_MAX &&
die->next >= shard->dies.size)
die->next = UINT32_MAX;
}
/* Finally, delete the new entries in the map. */
for (struct drgn_dwarf_index_die_map_iterator it =
drgn_dwarf_index_die_map_first(&shard->map);
it.entry; ) {
if (it.entry->value >= shard->dies.size) {
it = drgn_dwarf_index_die_map_delete_iterator(&shard->map,
it);
} else {
it = drgn_dwarf_index_die_map_next(it);
}
}
}
for (struct drgn_dwarf_specification_map_iterator it =
drgn_dwarf_specification_map_first(&dbinfo->dwarf.specifications);
it.entry; ) {
if (it.entry->module->state == DRGN_DEBUG_INFO_MODULE_INDEXED) {
it = drgn_dwarf_specification_map_next(it);
} else {
it = drgn_dwarf_specification_map_delete_iterator(&dbinfo->dwarf.specifications,
it);
}
}
}
struct drgn_error *
drgn_dwarf_info_update_index(struct drgn_dwarf_index_state *state)
{
struct drgn_debug_info *dbinfo = state->dbinfo;
struct drgn_dwarf_index_cu_vector *cus = &dbinfo->dwarf.index_cus;
if (!drgn_namespace_dwarf_index_alloc_shards(&dbinfo->dwarf.global))
return &drgn_enomem;
size_t old_cus_size = cus->size;
size_t new_cus_size = old_cus_size;
for (size_t i = 0; i < state->max_threads; i++)
new_cus_size += state->cus[i].size;
if (!drgn_dwarf_index_cu_vector_reserve(cus, new_cus_size))
return &drgn_enomem;
for (size_t i = 0; i < state->max_threads; i++) {
for (size_t j = 0; j < state->cus[i].size; j++) {
struct drgn_dwarf_index_pending_cu *pending_cu =
&state->cus[i].data[j];
cus->data[cus->size++] = (struct drgn_dwarf_index_cu){
.module = pending_cu->module,
.buf = pending_cu->buf,
.len = pending_cu->len,
.is_64_bit = pending_cu->is_64_bit,
.scn = pending_cu->scn,
.file_name_hashes =
(uint64_t *)no_file_name_hashes,
.num_file_names =
array_size(no_file_name_hashes),
};
}
}
struct drgn_error *err = NULL;
#pragma omp parallel
{
struct path_hash_cache path_hash_cache;
path_hash_vector_init(&path_hash_cache.directories);
path_hash_cache.entry_formats = NULL;
path_hash_cache.entry_formats_capacity = 0;
path_hash_cache.first_chunk =
malloc(sizeof(struct path_hash_chunk));
if (path_hash_cache.first_chunk) {
path_hash_cache.first_chunk->next = NULL;
} else {
#pragma omp critical(drgn_dwarf_info_update_index_error)
if (!err)
err = &drgn_enomem;
}
#pragma omp for schedule(dynamic)
for (size_t i = old_cus_size; i < cus->size; i++) {
if (err)
continue;
struct drgn_dwarf_index_cu *cu = &cus->data[i];
struct drgn_dwarf_index_cu_buffer cu_buffer;
drgn_dwarf_index_cu_buffer_init(&cu_buffer, cu);
struct drgn_error *cu_err = read_cu(&cu_buffer);
if (!cu_err)
cu_err = index_cu_first_pass(dbinfo, &cu_buffer,
&path_hash_cache);
if (cu_err) {
#pragma omp critical(drgn_dwarf_info_update_index_error)
if (err)
drgn_error_destroy(cu_err);
else
err = cu_err;
}
}
free(path_hash_cache.entry_formats);
path_hash_vector_deinit(&path_hash_cache.directories);
struct path_hash_chunk *chunk = path_hash_cache.first_chunk;
while (chunk) {
struct path_hash_chunk *next_chunk = chunk->next;
free(chunk);
chunk = next_chunk;
}
}
if (err)
goto err;
#pragma omp parallel for schedule(dynamic)
for (size_t i = old_cus_size; i < cus->size; i++) {
if (err)
continue;
struct drgn_dwarf_index_cu *cu = &cus->data[i];
struct drgn_dwarf_index_cu_buffer buffer;
drgn_dwarf_index_cu_buffer_init(&buffer, cu);
buffer.bb.pos += cu_header_size(cu);
struct drgn_error *cu_err =
index_cu_second_pass(&dbinfo->dwarf.global, &buffer);
if (cu_err) {
#pragma omp critical(drgn_dwarf_info_update_index_error)
if (err)
drgn_error_destroy(cu_err);
else
err = cu_err;
}
}
if (err) {
drgn_dwarf_index_rollback(dbinfo);
err:
for (size_t i = old_cus_size; i < cus->size; i++)
drgn_dwarf_index_cu_deinit(&cus->data[i]);
cus->size = old_cus_size;
}
return err;
}
static struct drgn_error *index_namespace(struct drgn_namespace_dwarf_index *ns)
{
if (ns->pending_dies.size == 0)
return NULL;
if (ns->saved_err)
return drgn_error_copy(ns->saved_err);
if (!drgn_namespace_dwarf_index_alloc_shards(ns))
return &drgn_enomem;
struct drgn_error *err = NULL;
#pragma omp parallel for schedule(dynamic)
for (size_t i = 0; i < ns->pending_dies.size; i++) {
if (!err) {
struct drgn_dwarf_index_pending_die *pending =
&ns->pending_dies.data[i];
struct drgn_dwarf_index_cu *cu =
&ns->dbinfo->dwarf.index_cus.data[pending->cu];
struct drgn_dwarf_index_cu_buffer buffer;
drgn_dwarf_index_cu_buffer_init(&buffer, cu);
buffer.bb.pos = (char *)pending->addr;
struct drgn_error *cu_err =
index_cu_second_pass(ns, &buffer);
if (cu_err) {
#pragma omp critical(drgn_index_namespace_error)
if (err)
drgn_error_destroy(cu_err);
else
err = cu_err;
}
}
}
if (err) {
ns->saved_err = err;
return drgn_error_copy(ns->saved_err);
}
ns->pending_dies.size = 0;
drgn_dwarf_index_pending_die_vector_shrink_to_fit(&ns->pending_dies);
return err;
}
/**
* Iterator over DWARF debugging information.
*
* An iterator is initialized with @ref drgn_dwarf_index_iterator_init(). It is
* advanced with @ref drgn_dwarf_index_iterator_next().
*/
struct drgn_dwarf_index_iterator {
const uint64_t *tags;
size_t num_tags;
struct drgn_dwarf_index_shard *shard;
uint32_t index;
};
/**
* Create an iterator over DIEs in a DWARF index namespace.
*
* @param[out] it DWARF index iterator to initialize.
* @param[in] ns Namespace DWARF index.
* @param[in] name Name of DIE to search for.
* @param[in] name_len Length of @c name.
* @param[in] tags List of DIE tags to search for.
* @param[in] num_tags Number of tags in @p tags, or zero to search for any tag.
* @return @c NULL on success, non-@c NULL on error.
*/
static struct drgn_error *
drgn_dwarf_index_iterator_init(struct drgn_dwarf_index_iterator *it,
struct drgn_namespace_dwarf_index *ns,
const char *name, size_t name_len,
const uint64_t *tags, size_t num_tags)
{
struct drgn_error *err = index_namespace(ns);
if (err)
return err;
if (ns->shards) {
struct nstring key = { name, name_len };
struct hash_pair hp = drgn_dwarf_index_die_map_hash(&key);
it->shard = &ns->shards[hash_pair_to_shard(hp)];
struct drgn_dwarf_index_die_map_iterator map_it =
drgn_dwarf_index_die_map_search_hashed(&it->shard->map,
&key, hp);
it->index = map_it.entry ? map_it.entry->value : UINT32_MAX;
} else {
it->shard = NULL;
it->index = UINT32_MAX;
}
it->tags = tags;
it->num_tags = num_tags;
return NULL;
}
static inline bool
drgn_dwarf_index_iterator_matches_tag(struct drgn_dwarf_index_iterator *it,
struct drgn_dwarf_index_die *die)
{
if (it->num_tags == 0)
return true;
for (size_t i = 0; i < it->num_tags; i++) {
if (die->tag == it->tags[i])
return true;
}
return false;
}
/**
* Get the next matching DIE from a DWARF index iterator.
*
* If matching any name, this is O(n), where n is the number of indexed DIEs. If
* matching by name, this is O(1) on average and O(n) worst case.
*
* Note that this returns the parent `DW_TAG_enumeration_type` for indexed
* `DW_TAG_enumerator` DIEs.
*
* @param[in] it DWARF index iterator.
* @return Next DIE, or @c NULL if there are no more matching DIEs.
*/
static struct drgn_dwarf_index_die *
drgn_dwarf_index_iterator_next(struct drgn_dwarf_index_iterator *it)
{
while (it->index != UINT32_MAX) {
struct drgn_dwarf_index_die *die =
&it->shard->dies.data[it->index];
it->index = die->next;
if (drgn_dwarf_index_iterator_matches_tag(it, die))
return die;
}
return NULL;
}
/**
* Get a @c Dwarf_Die from a @ref drgn_dwarf_index_die.
*
* @param[in] die Indexed DIE.
* @param[out] die_ret Returned DIE.
* @return @c NULL on success, non-@c NULL on error.
*/
static struct drgn_error *
drgn_dwarf_index_get_die(struct drgn_dwarf_index_die *die, Dwarf_Die *die_ret)
{
Dwarf_Addr bias;
Dwarf *dwarf = dwfl_module_getdwarf(die->module->dwfl_module, &bias);
if (!dwarf)
return drgn_error_libdwfl();
uintptr_t start =
(uintptr_t)die->module->scn_data[DRGN_SCN_DEBUG_INFO]->d_buf;
size_t size = die->module->scn_data[DRGN_SCN_DEBUG_INFO]->d_size;
if (die->addr >= start && die->addr < start + size) {
if (!dwarf_offdie(dwarf, die->addr - start, die_ret))
return drgn_error_libdw();
} else {
start = (uintptr_t)die->module->scn_data[DRGN_SCN_DEBUG_TYPES]->d_buf;
if (!dwarf_offdie_types(dwarf, die->addr - start, die_ret))
return drgn_error_libdw();
}
return NULL;
}
/*
* Language support.
*/
/**
* Return the @ref drgn_language of the CU of the given DIE.
*
* @param[in] fall_back Whether to fall back if the language is not found or
* unknown. If @c true, @ref drgn_default_language is returned in this case. If
* @c false, @c NULL is returned.
* @param[out] ret Returned language.
* @return @c NULL on success, non-@c NULL on error.
*/
static struct drgn_error *drgn_language_from_die(Dwarf_Die *die, bool fall_back,
const struct drgn_language **ret)
{
Dwarf_Die cudie;
if (!dwarf_cu_die(die->cu, &cudie, NULL, NULL, NULL, NULL, NULL, NULL))
return drgn_error_libdw();
switch (dwarf_srclang(&cudie)) {
case DW_LANG_C:
case DW_LANG_C89:
case DW_LANG_C99:
case DW_LANG_C11:
*ret = &drgn_language_c;
break;
case DW_LANG_C_plus_plus:
case DW_LANG_C_plus_plus_03:
case DW_LANG_C_plus_plus_11:
case DW_LANG_C_plus_plus_14:
*ret = &drgn_language_cpp;
break;
default:
*ret = fall_back ? &drgn_default_language : NULL;
break;
}
return NULL;
}
struct drgn_error *
drgn_debug_info_main_language(struct drgn_debug_info *dbinfo,
const struct drgn_language **ret)
{
struct drgn_error *err;
struct drgn_dwarf_index_iterator it;
const uint64_t tag = DW_TAG_subprogram;
err = drgn_dwarf_index_iterator_init(&it, &dbinfo->dwarf.global, "main",
strlen("main"), &tag, 1);
if (err)
return err;
struct drgn_dwarf_index_die *index_die;
while ((index_die = drgn_dwarf_index_iterator_next(&it))) {
Dwarf_Die die;
err = drgn_dwarf_index_get_die(index_die, &die);
if (err) {
drgn_error_destroy(err);
continue;
}
err = drgn_language_from_die(&die, false, ret);
if (err) {
drgn_error_destroy(err);
continue;
}
if (*ret)
return NULL;
}
*ret = NULL;
return NULL;
}
/*
* DIE iteration.
*/
DEFINE_VECTOR(dwarf_die_vector, Dwarf_Die)
/** Iterator over DWARF DIEs in a @ref drgn_debug_info_module. */
struct drgn_dwarf_die_iterator {
/** Stack of current DIE and its ancestors. */
struct dwarf_die_vector dies;
Dwarf *dwarf;
/** End of current CU (for bounds checking). */
const char *cu_end;
/** Offset of next CU. */
Dwarf_Off next_cu_off;
/** Whether current CU is from .debug_types. */
bool debug_types;
};
static void drgn_dwarf_die_iterator_init(struct drgn_dwarf_die_iterator *it,
Dwarf *dwarf)
{
dwarf_die_vector_init(&it->dies);
it->dwarf = dwarf;
it->next_cu_off = 0;
it->debug_types = false;
}
static void drgn_dwarf_die_iterator_deinit(struct drgn_dwarf_die_iterator *it)
{
dwarf_die_vector_deinit(&it->dies);
}
/**
* Return the next DWARF DIE in a @ref drgn_dwarf_die_iterator.
*
* The first call returns the top-level DIE for the first unit in the module.
* Subsequent calls return children, siblings, and unit DIEs.
*
* This includes the .debug_types section.
*
* @param[in,out] it Iterator containing the returned DIE and its ancestors. The
* last entry in `it->dies` is the DIE itself, the entry before that is its
* parent, the entry before that is its grandparent, etc.
* @param[in] children If @c true and the last returned DIE has children, return
* its first child (this is a pre-order traversal). Otherwise, return the next
* DIE at the level less than or equal to the last returned DIE, i.e., the last
* returned DIE's sibling, or its ancestor's sibling, or the next top-level unit
* DIE.
* @param[in] subtree If zero, iterate over all DIEs in all units. If non-zero,
* stop after returning all DIEs in the subtree rooted at the DIE that was
* returned in the last call as entry `subtree - 1` in `it->dies`.
* @return @c NULL on success, `&drgn_stop` if there are no more DIEs, in which
* case the size of `it->dies` equals @p subtree and `it->dies` refers to the
* root of the iterated subtree, non-@c NULL on error, in which case this should
* not be called again.
*/
static struct drgn_error *
drgn_dwarf_die_iterator_next(struct drgn_dwarf_die_iterator *it, bool children,
size_t subtree)
{
#define TOP() (&it->dies.data[it->dies.size - 1])
int r;
Dwarf_Die die;
assert(subtree <= it->dies.size);
if (it->dies.size == 0) {
/* This is the first call. Get the first unit DIE. */
if (!dwarf_die_vector_append_entry(&it->dies))
return &drgn_enomem;
} else {
if (children) {
r = dwarf_child(TOP(), &die);
if (r == 0) {
/* The previous DIE has a child. Return it. */
if (!dwarf_die_vector_append(&it->dies, &die))
return &drgn_enomem;
return NULL;
} else if (r < 0) {
return drgn_error_libdw();
}
/* The previous DIE has no children. */
}
if (it->dies.size == subtree) {
/*
* The previous DIE is the root of the subtree. We're
* done.
*/
return &drgn_stop;
}
if (it->dies.size > 1) {
r = dwarf_siblingof(TOP(), &die);
if (r == 0) {
/* The previous DIE has a sibling. Return it. */
*TOP() = die;
return NULL;
} else if (r > 0) {
if (!die.addr)
goto next_unit;
/*
* The previous DIE is the last child of its
* parent.
*/
char *addr = die.addr;
do {
/*
* addr points to the null terminator
* for the list of siblings. Go back up
* to its parent. The next byte is
* either the parent's sibling or
* another null terminator.
*/
it->dies.size--;
addr++;
if (it->dies.size == subtree) {
/*
* We're back to the root of the
* subtree. We're done.
*/
return &drgn_stop;
}
if (it->dies.size == 1 ||
addr >= it->cu_end)
goto next_unit;
} while (*addr == '\0');
/*
* addr now points to the next DIE. Return it.
*/
*TOP() = (Dwarf_Die){
.cu = it->dies.data[0].cu,
.addr = addr,
};
return NULL;
} else {
return drgn_error_libdw();
}
}
}
next_unit:;
/* There are no more DIEs in the current unit. */
Dwarf_Off cu_off = it->next_cu_off;
size_t cu_header_size;
uint64_t type_signature;
r = dwarf_next_unit(it->dwarf, cu_off, &it->next_cu_off,
&cu_header_size, NULL, NULL, NULL, NULL,
it->debug_types ? &type_signature : NULL, NULL);
if (r == 0) {
/* Got the next unit. Return the unit DIE. */
if (it->debug_types) {
r = !dwarf_offdie_types(it->dwarf,
cu_off + cu_header_size, TOP());
} else {
r = !dwarf_offdie(it->dwarf, cu_off + cu_header_size,
TOP());
}
if (r)
return drgn_error_libdw();
it->cu_end = ((const char *)TOP()->addr
- dwarf_dieoffset(TOP())
+ it->next_cu_off);
return NULL;
} else if (r > 0) {
if (!it->debug_types) {
it->next_cu_off = 0;
it->debug_types = true;
goto next_unit;
}
/* There are no more units. */
return &drgn_stop;
} else {
return drgn_error_libdw();
}
#undef TOP
}
struct drgn_error *
drgn_debug_info_module_find_dwarf_scopes(struct drgn_debug_info_module *module,
uint64_t pc, uint64_t *bias_ret,
Dwarf_Die **dies_ret,
size_t *length_ret)
{
struct drgn_error *err;
Dwarf_Addr bias;
Dwarf *dwarf = dwfl_module_getdwarf(module->dwfl_module, &bias);
if (!dwarf)
return drgn_error_libdw();
*bias_ret = bias;
pc -= bias;
/* First, try to get the CU containing the PC. */
Dwarf_Aranges *aranges;
size_t naranges;
if (dwarf_getaranges(dwarf, &aranges, &naranges) < 0)
return drgn_error_libdw();
struct drgn_dwarf_die_iterator it;
bool children;
size_t subtree;
Dwarf_Off offset;
if (dwarf_getarangeinfo(dwarf_getarange_addr(aranges, pc), NULL, NULL,
&offset) >= 0) {
drgn_dwarf_die_iterator_init(&it, dwarf);
Dwarf_Die *cu_die = dwarf_die_vector_append_entry(&it.dies);
if (!cu_die) {
err = &drgn_enomem;
goto err;
}
if (!dwarf_offdie(dwarf, offset, cu_die)) {
err = drgn_error_libdw();
goto err;
}
if (dwarf_next_unit(dwarf, offset - dwarf_cuoffset(cu_die),
&it.next_cu_off, NULL, NULL, NULL, NULL,
NULL, NULL, NULL)) {
err = drgn_error_libdw();
goto err;
}
it.cu_end = ((const char *)cu_die->addr
- dwarf_dieoffset(cu_die)
+ it.next_cu_off);
children = true;
subtree = 1;
} else {
/*
* Range was not found. .debug_aranges could be missing or
* incomplete, so fall back to checking each CU.
*/
drgn_dwarf_die_iterator_init(&it, dwarf);
children = false;
subtree = 0;
}
/* Now find DIEs containing the PC. */
while (!(err = drgn_dwarf_die_iterator_next(&it, children, subtree))) {
int r = dwarf_haspc(&it.dies.data[it.dies.size - 1], pc);
if (r > 0) {
children = true;
subtree = it.dies.size;
} else if (r < 0) {
err = drgn_error_libdw();
goto err;
}
}
if (err != &drgn_stop)
goto err;
*dies_ret = it.dies.data;
*length_ret = it.dies.size;
return NULL;
err:
drgn_dwarf_die_iterator_deinit(&it);
return err;
}
struct drgn_error *drgn_find_die_ancestors(Dwarf_Die *die, Dwarf_Die **dies_ret,
size_t *length_ret)
{
struct drgn_error *err;
Dwarf *dwarf = dwarf_cu_getdwarf(die->cu);
if (!dwarf)
return drgn_error_libdw();
struct dwarf_die_vector dies = VECTOR_INIT;
Dwarf_Die *cu_die = dwarf_die_vector_append_entry(&dies);
if (!cu_die) {
err = &drgn_enomem;
goto err;
}
Dwarf_Half cu_version;
Dwarf_Off type_offset;
if (!dwarf_cu_die(die->cu, cu_die, &cu_version, NULL, NULL, NULL, NULL,
&type_offset)) {
err = drgn_error_libdw();
goto err;
}
Dwarf_Off cu_die_offset = dwarf_dieoffset(cu_die);
bool debug_types = cu_version == 4 && type_offset != 0;
Dwarf_Off next_cu_offset;
uint64_t type_signature;
if (dwarf_next_unit(dwarf, cu_die_offset - dwarf_cuoffset(cu_die),
&next_cu_offset, NULL, NULL, NULL, NULL, NULL,
debug_types ? &type_signature : NULL, NULL)) {
err = drgn_error_libdw();
goto err;
}
const unsigned char *cu_end =
(unsigned char *)cu_die->addr - cu_die_offset + next_cu_offset;
#define TOP() (&dies.data[dies.size - 1])
while ((char *)TOP()->addr <= (char *)die->addr) {
if (TOP()->addr == die->addr) {
*dies_ret = dies.data;
*length_ret = dies.size - 1;
return NULL;
}
Dwarf_Attribute attr;
if (dwarf_attr(TOP(), DW_AT_sibling, &attr)) {
/* The top DIE has a DW_AT_sibling attribute. */
Dwarf_Die sibling;
if (!dwarf_formref_die(&attr, &sibling)) {
err = drgn_error_libdw();
goto err;
}
if (sibling.cu != TOP()->cu ||
(char *)sibling.addr <= (char *)TOP()->addr) {
err = drgn_error_create(DRGN_ERROR_OTHER,
"invalid DW_AT_sibling");
goto err;
}
if ((char *)sibling.addr > (char *)die->addr) {
/*
* The top DIE's sibling is after the target
* DIE. Therefore, the target DIE must be a
* descendant of the top DIE.
*/
Dwarf_Die *child =
dwarf_die_vector_append_entry(&dies);
if (!child) {
err = &drgn_enomem;
goto err;
}
int r = dwarf_child(TOP() - 1, child);
if (r < 0) {
err = drgn_error_libdw();
goto err;
} else if (r > 0) {
/*
* The top DIE didn't have any children,
* which should be impossible.
*/
goto not_found;
}
} else {
/*
* The top DIE's sibling is before or equal to
* the target DIE. Therefore, the target DIE
* isn't a descendant of the top DIE. Skip to
* the sibling.
*/
*TOP() = sibling;
}
} else {
/*
* The top DIE does not have a DW_AT_sibling attribute.
* Instead, we found the end of the top DIE.
*/
unsigned char *addr = attr.valp;
if (!addr || addr >= cu_end)
goto not_found;
/*
* If the top DIE has children, then addr is its first
* child. Otherwise, then addr is its sibling. (Unless
* it is a null terminator.)
*/
size_t new_size = dies.size;
if (dwarf_haschildren(TOP()) > 0)
new_size++;
while (*addr == '\0') {
/*
* addr points to the null terminator for the
* list of siblings. Go back up to its parent.
* The next byte is either the parent's sibling
* or another null terminator.
*/
new_size--;
addr++;
if (new_size <= 1 || addr >= cu_end)
goto not_found;
}
/* addr now points to the next DIE. Go to it. */
if (new_size > dies.size) {
if (!dwarf_die_vector_append_entry(&dies)) {
err = &drgn_enomem;
goto err;
}
} else {
dies.size = new_size;
}
*TOP() = (Dwarf_Die){
.cu = dies.data[0].cu,
.addr = addr,
};
}
}
#undef TOP
not_found:
err = drgn_error_create(DRGN_ERROR_OTHER,
"could not find DWARF DIE ancestors");
err:
dwarf_die_vector_deinit(&dies);
return err;
}
/*
* Location lists.
*/
static struct drgn_error *
drgn_dwarf_next_addrx(struct binary_buffer *bb,
struct drgn_debug_info_module *module, Dwarf_Die *cu_die,
uint8_t address_size, const char **addr_base,
uint64_t *ret)
{
struct drgn_error *err;
if (!*addr_base) {
Dwarf_Attribute attr_mem, *attr;
if (!(attr = dwarf_attr(cu_die, DW_AT_addr_base, &attr_mem))) {
return drgn_error_create(DRGN_ERROR_OTHER,
"indirect address without DW_AT_addr_base");
}
Dwarf_Word base;
if (dwarf_formudata(attr, &base))
return drgn_error_libdw();
if (!module->scns[DRGN_SCN_DEBUG_ADDR]) {
return drgn_error_create(DRGN_ERROR_OTHER,
"indirect address without .debug_addr section");
}
err = drgn_debug_info_module_cache_section(module,
DRGN_SCN_DEBUG_ADDR);
if (err)
return err;
if (base > module->scn_data[DRGN_SCN_DEBUG_ADDR]->d_size ||
base == 0) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_AT_addr_base is out of bounds");
}
*addr_base = (char *)module->scn_data[DRGN_SCN_DEBUG_ADDR]->d_buf + base;
uint8_t segment_selector_size = ((uint8_t *)*addr_base)[-1];
if (segment_selector_size != 0) {
return drgn_error_format(DRGN_ERROR_OTHER,
"unsupported segment selector size %" PRIu8,
segment_selector_size);
}
}
uint64_t index;
if ((err = binary_buffer_next_uleb128(bb, &index)))
return err;
Elf_Data *data = module->scn_data[DRGN_SCN_DEBUG_ADDR];
if (index >=
((char *)data->d_buf + data->d_size - *addr_base) / address_size) {
return binary_buffer_error(bb,
"address index is out of bounds");
}
copy_lsbytes(ret, sizeof(*ret), HOST_LITTLE_ENDIAN,
*addr_base + index * address_size, address_size,
drgn_platform_is_little_endian(&module->platform));
return NULL;
}
static struct drgn_error *
drgn_dwarf_read_loclistx(struct drgn_debug_info_module *module,
Dwarf_Die *cu_die, uint8_t offset_size,
Dwarf_Word index, Dwarf_Word *ret)
{
struct drgn_error *err;
Dwarf_Attribute attr_mem, *attr;
if (!(attr = dwarf_attr(cu_die, DW_AT_loclists_base, &attr_mem))) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_FORM_loclistx without DW_AT_loclists_base");
}
Dwarf_Word base;
if (dwarf_formudata(attr, &base))
return drgn_error_libdw();
if (!module->scns[DRGN_SCN_DEBUG_LOCLISTS]) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_FORM_loclistx without .debug_loclists section");
}
err = drgn_debug_info_module_cache_section(module,
DRGN_SCN_DEBUG_LOCLISTS);
if (err)
return err;
Elf_Data *data = module->scn_data[DRGN_SCN_DEBUG_LOCLISTS];
if (base > data->d_size) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_AT_loclists_base is out of bounds");
}
assert(offset_size == 4 || offset_size == 8);
if (index >= (data->d_size - base) / offset_size) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_FORM_loclistx is out of bounds");
}
const char *basep = (char *)data->d_buf + base;
if (offset_size == 8) {
uint64_t offset;
memcpy(&offset, (uint64_t *)basep + index, sizeof(offset));
if (drgn_platform_bswap(&module->platform))
offset = bswap_64(offset);
*ret = base + offset;
} else {
uint32_t offset;
memcpy(&offset, (uint32_t *)basep + index, sizeof(offset));
if (drgn_platform_bswap(&module->platform))
offset = bswap_32(offset);
*ret = base + offset;
}
return NULL;
}
static struct drgn_error *
drgn_dwarf5_location_list(struct drgn_debug_info_module *module,
Dwarf_Word offset, Dwarf_Die *cu_die,
uint8_t address_size, uint64_t pc,
const char **expr_ret, size_t *expr_size_ret)
{
struct drgn_error *err;
if (!module->scns[DRGN_SCN_DEBUG_LOCLISTS]) {
return drgn_error_create(DRGN_ERROR_OTHER,
"loclist without .debug_loclists section");
}
err = drgn_debug_info_module_cache_section(module,
DRGN_SCN_DEBUG_LOCLISTS);
if (err)
return err;
struct drgn_debug_info_buffer buffer;
drgn_debug_info_buffer_init(&buffer, module, DRGN_SCN_DEBUG_LOCLISTS);
if (offset > buffer.bb.end - buffer.bb.pos) {
return drgn_error_create(DRGN_ERROR_OTHER,
"loclist is out of bounds");
}
buffer.bb.pos += offset;
const char *addr_base = NULL;
uint64_t base;
bool base_valid = false;
/* Default is unknown. May be overridden by DW_LLE_default_location. */
*expr_ret = NULL;
*expr_size_ret = 0;
for (;;) {
uint8_t kind;
if ((err = binary_buffer_next_u8(&buffer.bb, &kind)))
return err;
uint64_t start, length, expr_size;
switch (kind) {
case DW_LLE_end_of_list:
return NULL;
case DW_LLE_base_addressx:
if ((err = drgn_dwarf_next_addrx(&buffer.bb, module,
cu_die, address_size,
&addr_base, &base)))
return err;
base_valid = true;
break;
case DW_LLE_startx_endx:
if ((err = drgn_dwarf_next_addrx(&buffer.bb, module,
cu_die, address_size,
&addr_base, &start)) ||
(err = drgn_dwarf_next_addrx(&buffer.bb, module,
cu_die, address_size,
&addr_base, &length)))
return err;
length -= start;
counted_location_description:
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&expr_size)))
return err;
if (expr_size > buffer.bb.end - buffer.bb.pos) {
return binary_buffer_error(&buffer.bb,
"location description size is out of bounds");
}
if (pc >= start && pc - start < length) {
*expr_ret = buffer.bb.pos;
*expr_size_ret = expr_size;
return NULL;
}
buffer.bb.pos += expr_size;
break;
case DW_LLE_startx_length:
if ((err = drgn_dwarf_next_addrx(&buffer.bb, module,
cu_die, address_size,
&addr_base, &start)) ||
(err = binary_buffer_next_uleb128(&buffer.bb,
&length)))
return err;
goto counted_location_description;
case DW_LLE_offset_pair:
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&start)) ||
(err = binary_buffer_next_uleb128(&buffer.bb,
&length)))
return err;
length -= start;
if (!base_valid) {
Dwarf_Addr low_pc;
if (dwarf_lowpc(cu_die, &low_pc))
return drgn_error_libdw();
base = low_pc;
base_valid = true;
}
start += base;
goto counted_location_description;
case DW_LLE_default_location:
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&expr_size)))
return err;
if (expr_size > buffer.bb.end - buffer.bb.pos) {
return binary_buffer_error(&buffer.bb,
"location description size is out of bounds");
}
*expr_ret = buffer.bb.pos;
*expr_size_ret = expr_size;
buffer.bb.pos += expr_size;
break;
case DW_LLE_base_address:
if ((err = binary_buffer_next_uint(&buffer.bb,
address_size,
&base)))
return err;
base_valid = true;
break;
case DW_LLE_start_end:
if ((err = binary_buffer_next_uint(&buffer.bb,
address_size,
&start)) ||
(err = binary_buffer_next_uint(&buffer.bb,
address_size,
&length)))
return err;
length -= start;
goto counted_location_description;
case DW_LLE_start_length:
if ((err = binary_buffer_next_uint(&buffer.bb,
address_size,
&start)) ||
(err = binary_buffer_next_uleb128(&buffer.bb,
&length)))
return err;
goto counted_location_description;
default:
return binary_buffer_error(&buffer.bb,
"unknown location list entry kind %#" PRIx8,
kind);
}
}
}
static struct drgn_error *
drgn_dwarf4_location_list(struct drgn_debug_info_module *module,
Dwarf_Word offset, Dwarf_Die *cu_die,
uint8_t address_size, uint64_t pc,
const char **expr_ret, size_t *expr_size_ret)
{
struct drgn_error *err;
if (!module->scns[DRGN_SCN_DEBUG_LOC]) {
return drgn_error_create(DRGN_ERROR_OTHER,
"loclistptr without .debug_loc section");
}
err = drgn_debug_info_module_cache_section(module, DRGN_SCN_DEBUG_LOC);
if (err)
return err;
struct drgn_debug_info_buffer buffer;
drgn_debug_info_buffer_init(&buffer, module, DRGN_SCN_DEBUG_LOC);
if (offset > buffer.bb.end - buffer.bb.pos) {
return drgn_error_create(DRGN_ERROR_OTHER,
"loclistptr is out of bounds");
}
buffer.bb.pos += offset;
uint64_t address_max = uint_max(address_size);
uint64_t base;
bool base_valid = false;
for (;;) {
uint64_t start, end;
if ((err = binary_buffer_next_uint(&buffer.bb, address_size,
&start)) ||
(err = binary_buffer_next_uint(&buffer.bb, address_size,
&end)))
return err;
if (start == 0 && end == 0) {
*expr_ret = NULL;
*expr_size_ret = 0;
return NULL;
} else if (start == address_max) {
base = end;
base_valid = true;
} else {
if (!base_valid) {
Dwarf_Addr low_pc;
if (dwarf_lowpc(cu_die, &low_pc))
return drgn_error_libdw();
base = low_pc;
base_valid = true;
}
uint16_t expr_size;
if ((err = binary_buffer_next_u16(&buffer.bb,
&expr_size)))
return err;
if (expr_size > buffer.bb.end - buffer.bb.pos) {
return binary_buffer_error(&buffer.bb,
"location description size is out of bounds");
}
if (base + start <= pc && pc < base + end) {
*expr_ret = buffer.bb.pos;
*expr_size_ret = expr_size;
return NULL;
}
buffer.bb.pos += expr_size;
}
}
}
static struct drgn_error *
drgn_dwarf_location(struct drgn_debug_info_module *module,
Dwarf_Attribute *attr,
const struct drgn_register_state *regs,
const char **expr_ret, size_t *expr_size_ret)
{
struct drgn_error *err;
switch (attr->form) {
/* DWARF 3 */
case DW_FORM_data4:
case DW_FORM_data8:
/* DWARF 4-5 */
case DW_FORM_sec_offset:
/* DWARF 5 */
case DW_FORM_loclistx: {
Dwarf_Die cu_die;
Dwarf_Half cu_version;
uint8_t address_size;
uint8_t offset_size;
if (!dwarf_cu_die(attr->cu, &cu_die, &cu_version, NULL,
&address_size, &offset_size, NULL, NULL))
return drgn_error_libdw();
if ((err = drgn_check_address_size(address_size)))
return err;
Dwarf_Word offset;
if (dwarf_formudata(attr, &offset))
return drgn_error_libdw();
if (attr->form == DW_FORM_loclistx &&
((err = drgn_dwarf_read_loclistx(module, &cu_die,
offset_size, offset,
&offset))))
return err;
struct optional_uint64 pc;
if (!regs ||
!(pc = drgn_register_state_get_pc(regs)).has_value) {
*expr_ret = NULL;
*expr_size_ret = 0;
return NULL;
}
Dwarf_Addr bias;
dwfl_module_info(module->dwfl_module, NULL, NULL, NULL, &bias,
NULL, NULL, NULL);
pc.value = pc.value - !regs->interrupted - bias;
if (cu_version >= 5) {
return drgn_dwarf5_location_list(module, offset,
&cu_die, address_size,
pc.value, expr_ret,
expr_size_ret);
} else {
return drgn_dwarf4_location_list(module, offset,
&cu_die, address_size,
pc.value, expr_ret,
expr_size_ret);
}
}
default: {
Dwarf_Block block;
if (dwarf_formblock(attr, &block))
return drgn_error_libdw();
*expr_ret = (char *)block.data;
*expr_size_ret = block.length;
return NULL;
}
}
}
/*
* DWARF expressions.
*/
/**
* Arbitrary limit for number of operations to execute in a DWARF expression to
* avoid infinite loops.
*/
static const int MAX_DWARF_EXPR_OPS = 10000;
/* A DWARF expression and the context it is being evaluated in. */
struct drgn_dwarf_expression_context {
struct binary_buffer bb;
const char *start;
struct drgn_program *prog;
struct drgn_debug_info_module *module;
uint8_t address_size;
Dwarf_Die cu_die;
const char *cu_addr_base;
Dwarf_Die *function;
const struct drgn_register_state *regs;
};
static struct drgn_error *
drgn_dwarf_expression_buffer_error(struct binary_buffer *bb, const char *pos,
const char *message)
{
struct drgn_dwarf_expression_context *ctx =
container_of(bb, struct drgn_dwarf_expression_context, bb);
return drgn_error_debug_info(ctx->module, pos, message);
}
static inline struct drgn_error *
drgn_dwarf_expression_context_init(struct drgn_dwarf_expression_context *ctx,
struct drgn_program *prog,
struct drgn_debug_info_module *module,
Dwarf_CU *cu, Dwarf_Die *function,
const struct drgn_register_state *regs,
const char *expr, size_t expr_size)
{
struct drgn_error *err;
binary_buffer_init(&ctx->bb, expr, expr_size,
drgn_platform_is_little_endian(&module->platform),
drgn_dwarf_expression_buffer_error);
ctx->start = expr;
ctx->prog = prog;
ctx->module = module;
if (cu) {
if (!dwarf_cu_die(cu, &ctx->cu_die, NULL, NULL,
&ctx->address_size, NULL, NULL, NULL))
return drgn_error_libdw();
if ((err = drgn_check_address_size(ctx->address_size)))
return err;
} else {
ctx->cu_die.addr = NULL;
ctx->address_size =
drgn_platform_address_size(&module->platform);
}
ctx->cu_addr_base = NULL;
ctx->function = function;
ctx->regs = regs;
return NULL;
}
static struct drgn_error *
drgn_dwarf_frame_base(struct drgn_program *prog,
struct drgn_debug_info_module *module, Dwarf_Die *die,
const struct drgn_register_state *regs,
int *remaining_ops, uint64_t *ret);
/*
* Evaluate a DWARF expression up to the next location description operation or
* operation that can't be evaluated in the given context.
*
* Returns &drgn_not_found if it tried to use an unknown register value.
*/
static struct drgn_error *
drgn_eval_dwarf_expression(struct drgn_dwarf_expression_context *ctx,
struct uint64_vector *stack,
int *remaining_ops)
{
struct drgn_error *err;
const struct drgn_platform *platform = &ctx->module->platform;
bool little_endian = drgn_platform_is_little_endian(platform);
uint8_t address_size = ctx->address_size;
uint8_t address_bits = address_size * CHAR_BIT;
uint64_t address_mask = uint_max(address_size);
drgn_register_number (*dwarf_regno_to_internal)(uint64_t) =
platform->arch->dwarf_regno_to_internal;
#define CHECK(n) do { \
size_t _n = (n); \
if (stack->size < _n) { \
return binary_buffer_error(&ctx->bb, \
"DWARF expression stack underflow"); \
} \
} while (0)
#define ELEM(i) stack->data[stack->size - 1 - (i)]
#define PUSH(x) do { \
uint64_t push = (x); \
if (!uint64_vector_append(stack, &push)) \
return &drgn_enomem; \
} while (0)
#define PUSH_MASK(x) PUSH((x) & address_mask)
while (binary_buffer_has_next(&ctx->bb)) {
if (*remaining_ops <= 0) {
return binary_buffer_error(&ctx->bb,
"DWARF expression executed too many operations");
}
(*remaining_ops)--;
uint8_t opcode;
if ((err = binary_buffer_next_u8(&ctx->bb, &opcode)))
return err;
uint64_t uvalue;
uint64_t dwarf_regno;
uint8_t deref_size;
switch (opcode) {
/* Literal encodings. */
case DW_OP_lit0 ... DW_OP_lit31:
PUSH(opcode - DW_OP_lit0);
break;
case DW_OP_addr:
if ((err = binary_buffer_next_uint(&ctx->bb,
address_size,
&uvalue)))
return err;
PUSH(uvalue);
break;
case DW_OP_const1u:
if ((err = binary_buffer_next_u8_into_u64(&ctx->bb,
&uvalue)))
return err;
PUSH(uvalue);
break;
case DW_OP_const2u:
if ((err = binary_buffer_next_u16_into_u64(&ctx->bb,
&uvalue)))
return err;
PUSH_MASK(uvalue);
break;
case DW_OP_const4u:
if ((err = binary_buffer_next_u32_into_u64(&ctx->bb,
&uvalue)))
return err;
PUSH_MASK(uvalue);
break;
case DW_OP_const8u:
if ((err = binary_buffer_next_u64(&ctx->bb, &uvalue)))
return err;
PUSH_MASK(uvalue);
break;
case DW_OP_const1s:
if ((err = binary_buffer_next_s8_into_u64(&ctx->bb,
&uvalue)))
return err;
PUSH_MASK(uvalue);
break;
case DW_OP_const2s:
if ((err = binary_buffer_next_s16_into_u64(&ctx->bb,
&uvalue)))
return err;
PUSH_MASK(uvalue);
break;
case DW_OP_const4s:
if ((err = binary_buffer_next_s32_into_u64(&ctx->bb,
&uvalue)))
return err;
PUSH_MASK(uvalue);
break;
case DW_OP_const8s:
if ((err = binary_buffer_next_s64_into_u64(&ctx->bb,
&uvalue)))
return err;
PUSH_MASK(uvalue);
break;
case DW_OP_constu:
if ((err = binary_buffer_next_uleb128(&ctx->bb,
&uvalue)))
return err;
PUSH_MASK(uvalue);
break;
case DW_OP_consts:
if ((err = binary_buffer_next_sleb128_into_u64(&ctx->bb,
&uvalue)))
return err;
PUSH_MASK(uvalue);
break;
case DW_OP_addrx:
case DW_OP_constx:
if (!ctx->cu_die.addr) {
ctx->bb.pos = ctx->bb.prev;
return NULL;
}
if ((err = drgn_dwarf_next_addrx(&ctx->bb, ctx->module,
&ctx->cu_die,
address_size,
&ctx->cu_addr_base,
&uvalue)))
return err;
PUSH(uvalue);
break;
/* Register values. */
case DW_OP_fbreg: {
err = drgn_dwarf_frame_base(ctx->prog, ctx->module,
ctx->function, ctx->regs,
remaining_ops, &uvalue);
if (err)
return err;
int64_t svalue;
if ((err = binary_buffer_next_sleb128(&ctx->bb,
&svalue)))
return err;
PUSH_MASK(uvalue + svalue);
break;
}
case DW_OP_breg0 ... DW_OP_breg31:
dwarf_regno = opcode - DW_OP_breg0;
goto breg;
case DW_OP_bregx:
if ((err = binary_buffer_next_uleb128(&ctx->bb,
&dwarf_regno)))
return err;
breg:
{
if (!ctx->regs)
return &drgn_not_found;
drgn_register_number regno =
dwarf_regno_to_internal(dwarf_regno);
if (!drgn_register_state_has_register(ctx->regs, regno))
return &drgn_not_found;
const struct drgn_register_layout *layout =
&platform->arch->register_layout[regno];
copy_lsbytes(&uvalue, sizeof(uvalue),
HOST_LITTLE_ENDIAN,
&ctx->regs->buf[layout->offset],
layout->size, little_endian);
int64_t svalue;
if ((err = binary_buffer_next_sleb128(&ctx->bb,
&svalue)))
return err;
PUSH_MASK(uvalue + svalue);
break;
}
/* Stack operations. */
case DW_OP_dup:
CHECK(1);
PUSH(ELEM(0));
break;
case DW_OP_drop:
CHECK(1);
stack->size--;
break;
case DW_OP_pick: {
uint8_t index;
if ((err = binary_buffer_next_u8(&ctx->bb, &index)))
return err;
CHECK(index + 1);
PUSH(ELEM(index));
break;
}
case DW_OP_over:
CHECK(2);
PUSH(ELEM(1));
break;
case DW_OP_swap:
CHECK(2);
uvalue = ELEM(0);
ELEM(0) = ELEM(1);
ELEM(1) = uvalue;
break;
case DW_OP_rot:
CHECK(3);
uvalue = ELEM(0);
ELEM(0) = ELEM(1);
ELEM(1) = ELEM(2);
ELEM(2) = uvalue;
break;
case DW_OP_deref:
deref_size = address_size;
goto deref;
case DW_OP_deref_size:
if ((err = binary_buffer_next_u8(&ctx->bb,
&deref_size)))
return err;
if (deref_size > address_size) {
return binary_buffer_error(&ctx->bb,
"DW_OP_deref_size has invalid size");
}
deref:
{
CHECK(1);
char deref_buf[8];
err = drgn_program_read_memory(ctx->prog, deref_buf,
ELEM(0), deref_size,
false);
if (err)
return err;
copy_lsbytes(&ELEM(0), sizeof(ELEM(0)),
HOST_LITTLE_ENDIAN, deref_buf, deref_size,
little_endian);
break;
}
case DW_OP_call_frame_cfa: {
if (!ctx->regs)
return &drgn_not_found;
/*
* The DWARF 5 specification says that
* DW_OP_call_frame_cfa cannot be used for CFI. For
* DW_CFA_def_cfa_expression, it is clearly invalid to
* define the CFA in terms of the CFA, and it will fail
* naturally below. This restriction doesn't make sense
* for DW_CFA_expression and DW_CFA_val_expression, as
* they push the CFA and thus depend on it anyways, so
* we don't bother enforcing it.
*/
struct optional_uint64 cfa =
drgn_register_state_get_cfa(ctx->regs);
if (!cfa.has_value)
return &drgn_not_found;
PUSH(cfa.value);
break;
}
/* Arithmetic and logical operations. */
#define UNOP_MASK(op) do { \
CHECK(1); \
ELEM(0) = (op ELEM(0)) & address_mask; \
} while (0)
#define BINOP(op) do { \
CHECK(2); \
ELEM(1) = ELEM(1) op ELEM(0); \
stack->size--; \
} while (0)
#define BINOP_MASK(op) do { \
CHECK(2); \
ELEM(1) = (ELEM(1) op ELEM(0)) & address_mask; \
stack->size--; \
} while (0)
case DW_OP_abs:
CHECK(1);
if (ELEM(0) & (UINT64_C(1) << (address_bits - 1)))
ELEM(0) = -ELEM(0) & address_mask;
break;
case DW_OP_and:
BINOP(&);
break;
case DW_OP_div:
CHECK(2);
if (ELEM(0) == 0) {
return binary_buffer_error(&ctx->bb,
"division by zero in DWARF expression");
}
ELEM(1) = ((truncate_signed(ELEM(1), address_bits)
/ truncate_signed(ELEM(0), address_bits))
& address_mask);
stack->size--;
break;
case DW_OP_minus:
BINOP_MASK(-);
break;
case DW_OP_mod:
CHECK(2);
if (ELEM(0) == 0) {
return binary_buffer_error(&ctx->bb,
"modulo by zero in DWARF expression");
}
ELEM(1) = ELEM(1) % ELEM(0);
stack->size--;
break;
case DW_OP_mul:
BINOP_MASK(*);
break;
case DW_OP_neg:
UNOP_MASK(-);
break;
case DW_OP_not:
UNOP_MASK(~);
break;
case DW_OP_or:
BINOP(|);
break;
case DW_OP_plus:
BINOP_MASK(+);
break;
case DW_OP_plus_uconst:
CHECK(1);
if ((err = binary_buffer_next_uleb128(&ctx->bb,
&uvalue)))
return err;
ELEM(0) = (ELEM(0) + uvalue) & address_mask;
break;
case DW_OP_shl:
CHECK(2);
if (ELEM(0) < address_bits)
ELEM(1) = (ELEM(1) << ELEM(0)) & address_mask;
else
ELEM(1) = 0;
stack->size--;
break;
case DW_OP_shr:
CHECK(2);
if (ELEM(0) < address_bits)
ELEM(1) >>= ELEM(0);
else
ELEM(1) = 0;
stack->size--;
break;
case DW_OP_shra:
CHECK(2);
if (ELEM(0) < address_bits) {
ELEM(1) = ((truncate_signed(ELEM(1), address_bits)
>> ELEM(0))
& address_mask);
} else if (ELEM(1) & (UINT64_C(1) << (address_bits - 1))) {
ELEM(1) = -INT64_C(1) & address_mask;
} else {
ELEM(1) = 0;
}
stack->size--;
break;
case DW_OP_xor:
BINOP(^);
break;
#undef BINOP_MASK
#undef BINOP
#undef UNOP_MASK
/* Control flow operations. */
#define RELOP(op) do { \
CHECK(2); \
ELEM(1) = (truncate_signed(ELEM(1), address_bits) op \
truncate_signed(ELEM(0), address_bits)); \
stack->size--; \
} while (0)
case DW_OP_le:
RELOP(<=);
break;
case DW_OP_ge:
RELOP(>=);
break;
case DW_OP_eq:
RELOP(==);
break;
case DW_OP_lt:
RELOP(<);
break;
case DW_OP_gt:
RELOP(>);
break;
case DW_OP_ne:
RELOP(!=);
break;
#undef RELOP
case DW_OP_skip:
branch:
{
int16_t skip;
if ((err = binary_buffer_next_s16(&ctx->bb, &skip)))
return err;
if ((skip >= 0 && skip > ctx->bb.end - ctx->bb.pos) ||
(skip < 0 && -skip > ctx->bb.pos - ctx->start)) {
return binary_buffer_error(&ctx->bb,
"DWARF expression branch is out of bounds");
}
ctx->bb.pos += skip;
break;
}
case DW_OP_bra:
CHECK(1);
if (ELEM(0)) {
stack->size--;
goto branch;
} else {
stack->size--;
if ((err = binary_buffer_skip(&ctx->bb, 2)))
return err;
}
break;
/* Special operations. */
case DW_OP_nop:
break;
/* Location description operations. */
case DW_OP_reg0 ... DW_OP_reg31:
case DW_OP_regx:
case DW_OP_implicit_value:
case DW_OP_stack_value:
case DW_OP_piece:
case DW_OP_bit_piece:
/* The caller must handle it. */
ctx->bb.pos = ctx->bb.prev;
return NULL;
/*
* We don't yet support:
*
* - DW_OP_push_object_address
* - DW_OP_form_tls_address
* - DW_OP_entry_value
* DW_OP_implicit_pointer
* - Procedure calls: DW_OP_call2, DW_OP_call4, DW_OP_call_ref.
* - Typed operations: DW_OP_const_type, DW_OP_regval_type,
* DW_OP_deref_type, DW_OP_convert, DW_OP_reinterpret.
* - Operations for multiple address spaces: DW_OP_xderef,
* DW_OP_xderef_size, DW_OP_xderef_type.
*/
default:
return binary_buffer_error(&ctx->bb,
"unknown DWARF expression opcode %#" PRIx8,
opcode);
}
}
#undef PUSH_MASK
#undef PUSH
#undef ELEM
#undef CHECK
return NULL;
}
static struct drgn_error *
drgn_dwarf_frame_base(struct drgn_program *prog,
struct drgn_debug_info_module *module, Dwarf_Die *die,
const struct drgn_register_state *regs,
int *remaining_ops, uint64_t *ret)
{
struct drgn_error *err;
bool little_endian = drgn_platform_is_little_endian(&module->platform);
drgn_register_number (*dwarf_regno_to_internal)(uint64_t) =
module->platform.arch->dwarf_regno_to_internal;
if (!die)
return &drgn_not_found;
Dwarf_Attribute attr_mem, *attr;
if (!(attr = dwarf_attr_integrate(die, DW_AT_frame_base, &attr_mem)))
return &drgn_not_found;
const char *expr;
size_t expr_size;
err = drgn_dwarf_location(module, attr, regs, &expr, &expr_size);
if (err)
return err;
struct drgn_dwarf_expression_context ctx;
if ((err = drgn_dwarf_expression_context_init(&ctx, prog, module,
die->cu, NULL, regs, expr,
expr_size)))
return err;
struct uint64_vector stack = VECTOR_INIT;
for (;;) {
err = drgn_eval_dwarf_expression(&ctx, &stack, remaining_ops);
if (err)
goto out;
if (binary_buffer_has_next(&ctx.bb)) {
uint8_t opcode;
if ((err = binary_buffer_next_u8(&ctx.bb, &opcode)))
goto out;
uint64_t dwarf_regno;
switch (opcode) {
case DW_OP_reg0 ... DW_OP_reg31:
dwarf_regno = opcode - DW_OP_reg0;
goto reg;
case DW_OP_regx:
if ((err = binary_buffer_next_uleb128(&ctx.bb,
&dwarf_regno)))
goto out;
reg:
{
if (!regs) {
err = &drgn_not_found;
goto out;
}
drgn_register_number regno =
dwarf_regno_to_internal(dwarf_regno);
if (!drgn_register_state_has_register(regs,
regno)) {
err = &drgn_not_found;
goto out;
}
const struct drgn_register_layout *layout =
&prog->platform.arch->register_layout[regno];
/*
* Note that this doesn't mask the address since
* the caller does that.
*/
copy_lsbytes(ret, sizeof(*ret),
HOST_LITTLE_ENDIAN,
&regs->buf[layout->offset],
layout->size, little_endian);
if (binary_buffer_has_next(&ctx.bb)) {
err = binary_buffer_error(&ctx.bb,
"stray operations in DW_AT_frame_base expression");
} else {
err = NULL;
}
goto out;
}
default:
err = binary_buffer_error(&ctx.bb,
"invalid opcode %#" PRIx8 " for DW_AT_frame_base expression",
opcode);
goto out;
}
} else if (stack.size) {
*ret = stack.data[stack.size - 1];
err = NULL;
break;
} else {
err = &drgn_not_found;
break;
}
}
out:
uint64_vector_deinit(&stack);
return err;
}
/*
* Type and object parsing.
*/
/**
* Return whether a DWARF DIE is little-endian.
*
* @param[in] check_attr Whether to check the DW_AT_endianity attribute. If @c
* false, only the ELF header is checked and this function cannot fail.
* @return @c NULL on success, non-@c NULL on error.
*/
static struct drgn_error *dwarf_die_is_little_endian(Dwarf_Die *die,
bool check_attr, bool *ret)
{
Dwarf_Attribute endianity_attr_mem, *endianity_attr;
Dwarf_Word endianity;
if (check_attr &&
(endianity_attr = dwarf_attr_integrate(die, DW_AT_endianity,
&endianity_attr_mem))) {
if (dwarf_formudata(endianity_attr, &endianity)) {
return drgn_error_create(DRGN_ERROR_OTHER,
"invalid DW_AT_endianity");
}
} else {
endianity = DW_END_default;
}
switch (endianity) {
case DW_END_default: {
Elf *elf = dwarf_getelf(dwarf_cu_getdwarf(die->cu));
*ret = elf_getident(elf, NULL)[EI_DATA] == ELFDATA2LSB;
return NULL;
}
case DW_END_little:
*ret = true;
return NULL;
case DW_END_big:
*ret = false;
return NULL;
default:
return drgn_error_create(DRGN_ERROR_OTHER,
"unknown DW_AT_endianity");
}
}
/** Like dwarf_die_is_little_endian(), but returns a @ref drgn_byte_order. */
static struct drgn_error *dwarf_die_byte_order(Dwarf_Die *die, bool check_attr,
enum drgn_byte_order *ret)
{
bool little_endian;
struct drgn_error *err = dwarf_die_is_little_endian(die, check_attr,
&little_endian);
/*
* dwarf_die_is_little_endian() can't fail if check_attr is false, so
* the !check_attr test suppresses maybe-uninitialized warnings.
*/
if (!err || !check_attr)
*ret = drgn_byte_order_from_little_endian(little_endian);
return err;
}
static int dwarf_type(Dwarf_Die *die, Dwarf_Die *ret)
{
Dwarf_Attribute attr_mem;
Dwarf_Attribute *attr;
if (!(attr = dwarf_attr_integrate(die, DW_AT_type, &attr_mem)))
return 1;
return dwarf_formref_die(attr, ret) ? 0 : -1;
}
static int dwarf_flag(Dwarf_Die *die, unsigned int name, bool *ret)
{
Dwarf_Attribute attr_mem;
Dwarf_Attribute *attr;
if (!(attr = dwarf_attr(die, name, &attr_mem))) {
*ret = false;
return 0;
}
return dwarf_formflag(attr, ret);
}
static int dwarf_flag_integrate(Dwarf_Die *die, unsigned int name, bool *ret)
{
Dwarf_Attribute attr_mem;
Dwarf_Attribute *attr;
if (!(attr = dwarf_attr_integrate(die, name, &attr_mem))) {
*ret = false;
return 0;
}
return dwarf_formflag(attr, ret);
}
/**
* Parse a type from a DWARF debugging information entry.
*
* This is the same as @ref drgn_type_from_dwarf() except that it can be used to
* work around a bug in GCC < 9.0 that zero length array types are encoded the
* same as incomplete array types. There are a few places where GCC allows
* zero-length arrays but not incomplete arrays:
*
* - As the type of a member of a structure with only one member.
* - As the type of a structure member other than the last member.
* - As the type of a union member.
* - As the element type of an array.
*
* In these cases, we know that what appears to be an incomplete array type must
* actually have a length of zero. In other cases, a subrange DIE without
* DW_AT_count or DW_AT_upper_bound is ambiguous; we return an incomplete array
* type.
*
* @param[in] dbinfo Debugging information.
* @param[in] module Module containing @p die.
* @param[in] die DIE to parse.
* @param[in] can_be_incomplete_array Whether the type can be an incomplete
* array type. If this is @c false and the type appears to be an incomplete
* array type, its length is set to zero instead.
* @param[out] is_incomplete_array_ret Whether the encoded type is an incomplete
* array type or a typedef of an incomplete array type (regardless of @p
* can_be_incomplete_array).
* @param[out] ret Returned type.
* @return @c NULL on success, non-@c NULL on error.
*/
static struct drgn_error *
drgn_type_from_dwarf_internal(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module,
Dwarf_Die *die, bool can_be_incomplete_array,
bool *is_incomplete_array_ret,
struct drgn_qualified_type *ret);
/**
* Parse a type from a DWARF debugging information entry.
*
* @param[in] dbinfo Debugging information.
* @param[in] module Module containing @p die.
* @param[in] die DIE to parse.
* @param[out] ret Returned type.
* @return @c NULL on success, non-@c NULL on error.
*/
static inline struct drgn_error *
drgn_type_from_dwarf(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module, Dwarf_Die *die,
struct drgn_qualified_type *ret)
{
return drgn_type_from_dwarf_internal(dbinfo, module, die, true, NULL,
ret);
}
/**
* Parse a type from the @c DW_AT_type attribute of a DWARF debugging
* information entry.
*
* @param[in] dbinfo Debugging information.
* @param[in] module Module containing @p die.
* @param[in] die DIE with @c DW_AT_type attribute.
* @param[in] lang Language of @p die if it is already known, @c NULL if it
* should be determined from @p die.
* @param[in] can_be_void Whether the @c DW_AT_type attribute may be missing,
* which is interpreted as a void type. If this is false and the @c DW_AT_type
* attribute is missing, an error is returned.
* @param[in] can_be_incomplete_array See @ref drgn_type_from_dwarf_internal().
* @param[in] is_incomplete_array_ret See @ref drgn_type_from_dwarf_internal().
* @param[out] ret Returned type.
* @return @c NULL on success, non-@c NULL on error.
*/
static struct drgn_error *
drgn_type_from_dwarf_attr(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module, Dwarf_Die *die,
const struct drgn_language *lang,
bool can_be_void, bool can_be_incomplete_array,
bool *is_incomplete_array_ret,
struct drgn_qualified_type *ret)
{
struct drgn_error *err;
char tag_buf[DW_TAG_BUF_LEN];
Dwarf_Attribute attr_mem;
Dwarf_Attribute *attr;
if (!(attr = dwarf_attr_integrate(die, DW_AT_type, &attr_mem))) {
if (can_be_void) {
if (!lang) {
err = drgn_language_from_die(die, true, &lang);
if (err)
return err;
}
ret->type = drgn_void_type(dbinfo->prog, lang);
ret->qualifiers = 0;
return NULL;
} else {
return drgn_error_format(DRGN_ERROR_OTHER,
"%s is missing DW_AT_type",
dwarf_tag_str(die, tag_buf));
}
}
Dwarf_Die type_die;
if (!dwarf_formref_die(attr, &type_die)) {
return drgn_error_format(DRGN_ERROR_OTHER,
"%s has invalid DW_AT_type",
dwarf_tag_str(die, tag_buf));
}
return drgn_type_from_dwarf_internal(dbinfo, module, &type_die,
can_be_incomplete_array,
is_incomplete_array_ret, ret);
}
static struct drgn_error *
drgn_object_from_dwarf_enumerator(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module,
Dwarf_Die *die, const char *name,
struct drgn_object *ret)
{
struct drgn_error *err;
struct drgn_qualified_type qualified_type;
err = drgn_type_from_dwarf(dbinfo, module, die, &qualified_type);
if (err)
return err;
const struct drgn_type_enumerator *enumerators =
drgn_type_enumerators(qualified_type.type);
size_t num_enumerators = drgn_type_num_enumerators(qualified_type.type);
for (size_t i = 0; i < num_enumerators; i++) {
if (strcmp(enumerators[i].name, name) != 0)
continue;
if (drgn_enum_type_is_signed(qualified_type.type)) {
return drgn_object_set_signed(ret, qualified_type,
enumerators[i].svalue, 0);
} else {
return drgn_object_set_unsigned(ret, qualified_type,
enumerators[i].uvalue,
0);
}
}
UNREACHABLE();
}
static struct drgn_error *
drgn_object_from_dwarf_subprogram(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module,
Dwarf_Die *die, struct drgn_object *ret)
{
struct drgn_qualified_type qualified_type;
struct drgn_error *err = drgn_type_from_dwarf(dbinfo, module, die,
&qualified_type);
if (err)
return err;
Dwarf_Addr low_pc;
if (dwarf_lowpc(die, &low_pc) == -1)
return drgn_object_set_absent(ret, qualified_type, 0);
Dwarf_Addr bias;
dwfl_module_info(module->dwfl_module, NULL, NULL, NULL, &bias, NULL,
NULL, NULL);
return drgn_object_set_reference(ret, qualified_type, low_pc + bias, 0,
0);
}
static struct drgn_error *read_bits(struct drgn_program *prog, void *dst,
unsigned int dst_bit_offset, uint64_t src,
unsigned int src_bit_offset,
uint64_t bit_size, bool lsb0)
{
struct drgn_error *err;
assert(dst_bit_offset < 8);
assert(src_bit_offset < 8);
if (bit_size == 0)
return NULL;
if (dst_bit_offset == src_bit_offset) {
/*
* We can read directly into the the destination buffer, but we
* may have to preserve some bits at the start and/or end.
*/
uint8_t *d = dst;
uint64_t last_bit = dst_bit_offset + bit_size - 1;
uint8_t first_byte = d[0];
uint8_t last_byte = d[last_bit / 8];
err = drgn_program_read_memory(prog, d, src, last_bit / 8 + 1,
false);
if (err)
return err;
if (dst_bit_offset != 0) {
uint8_t mask =
copy_bits_first_mask(dst_bit_offset, lsb0);
d[0] = (first_byte & ~mask) | (d[0] & mask);
}
if (last_bit % 8 != 7) {
uint8_t mask = copy_bits_last_mask(last_bit, lsb0);
d[last_bit / 8] = ((last_byte & ~mask)
| (d[last_bit / 8] & mask));
}
return NULL;
} else {
/*
* If the source and destination have different offsets, then
* depending on the size and source offset, we may have to read
* one more byte than is available in the destination. To keep
* things simple, we always read into a temporary buffer (rather
* than adding a special case for reading directly into the
* destination and shifting bits around).
*/
uint64_t src_bytes = (src_bit_offset + bit_size - 1) / 8 + 1;
char stack_tmp[16], *tmp;
if (src_bytes <= sizeof(stack_tmp)) {
tmp = stack_tmp;
} else {
tmp = malloc64(src_bytes);
if (!tmp)
return &drgn_enomem;
}
err = drgn_program_read_memory(prog, tmp, src, src_bytes,
false);
if (!err) {
copy_bits(dst, dst_bit_offset, tmp, src_bit_offset,
bit_size, lsb0);
}
if (src_bytes > sizeof(stack_tmp))
free(tmp);
return err;
}
}
static struct drgn_error *
drgn_object_from_dwarf_location(struct drgn_program *prog,
struct drgn_debug_info_module *module,
Dwarf_Die *die,
struct drgn_qualified_type qualified_type,
const char *expr, size_t expr_size,
Dwarf_Die *function_die,
const struct drgn_register_state *regs,
struct drgn_object *ret)
{
struct drgn_error *err;
bool little_endian = drgn_platform_is_little_endian(&module->platform);
uint64_t address_mask = drgn_platform_address_mask(&module->platform);
drgn_register_number (*dwarf_regno_to_internal)(uint64_t) =
module->platform.arch->dwarf_regno_to_internal;
struct drgn_object_type type;
err = drgn_object_type(qualified_type, 0, &type);
if (err)
return err;
union drgn_value value;
char *value_buf = NULL;
uint64_t address = 0; /* GCC thinks this may be used uninitialized. */
int bit_offset = -1; /* -1 means that we don't have an address. */
uint64_t bit_pos = 0;
int remaining_ops = MAX_DWARF_EXPR_OPS;
struct drgn_dwarf_expression_context ctx;
if ((err = drgn_dwarf_expression_context_init(&ctx, prog, module,
die->cu, function_die,
regs, expr, expr_size)))
return err;
struct uint64_vector stack = VECTOR_INIT;
do {
stack.size = 0;
err = drgn_eval_dwarf_expression(&ctx, &stack, &remaining_ops);
if (err == &drgn_not_found)
goto absent;
else if (err)
goto out;
const void *src = NULL;
size_t src_size;
if (binary_buffer_has_next(&ctx.bb)) {
uint8_t opcode;
if ((err = binary_buffer_next_u8(&ctx.bb, &opcode)))
goto out;
uint64_t uvalue;
uint64_t dwarf_regno;
drgn_register_number regno;
switch (opcode) {
case DW_OP_reg0 ... DW_OP_reg31:
dwarf_regno = opcode - DW_OP_reg0;
goto reg;
case DW_OP_regx:
if ((err = binary_buffer_next_uleb128(&ctx.bb,
&dwarf_regno)))
goto out;
reg:
if (!regs)
goto absent;
regno = dwarf_regno_to_internal(dwarf_regno);
if (!drgn_register_state_has_register(regs,
regno))
goto absent;
const struct drgn_register_layout *layout =
&prog->platform.arch->register_layout[regno];
src = &regs->buf[layout->offset];
src_size = layout->size;
break;
case DW_OP_implicit_value:
if ((err = binary_buffer_next_uleb128(&ctx.bb,
&uvalue)))
goto out;
if (uvalue > ctx.bb.end - ctx.bb.pos) {
err = binary_buffer_error(&ctx.bb,
"DW_OP_implicit_value size is out of bounds");
goto out;
}
src = ctx.bb.pos;
src_size = uvalue;
ctx.bb.pos += uvalue;
break;
case DW_OP_stack_value:
if (!stack.size)
goto absent;
if (little_endian != HOST_LITTLE_ENDIAN) {
stack.data[stack.size - 1] =
bswap_64(stack.data[stack.size - 1]);
}
src = &stack.data[stack.size - 1];
src_size = sizeof(stack.data[0]);
break;
default:
ctx.bb.pos = ctx.bb.prev;
break;
}
}
uint64_t piece_bit_size;
uint64_t piece_bit_offset;
if (binary_buffer_has_next(&ctx.bb)) {
uint8_t opcode;
if ((err = binary_buffer_next_u8(&ctx.bb, &opcode)))
goto out;
switch (opcode) {
case DW_OP_piece:
if ((err = binary_buffer_next_uleb128(&ctx.bb,
&piece_bit_size)))
goto out;
/*
* It's probably bogus for the piece size to be
* larger than the remaining value size, but
* that's not explicitly stated in the DWARF 5
* specification, so clamp it instead.
*/
if (__builtin_mul_overflow(piece_bit_size, 8U,
&piece_bit_size) ||
piece_bit_size > type.bit_size - bit_pos)
piece_bit_size = type.bit_size - bit_pos;
piece_bit_offset = 0;
break;
case DW_OP_bit_piece:
if ((err = binary_buffer_next_uleb128(&ctx.bb,
&piece_bit_size)) ||
(err = binary_buffer_next_uleb128(&ctx.bb,
&piece_bit_offset)))
goto out;
if (piece_bit_size > type.bit_size - bit_pos)
piece_bit_size = type.bit_size - bit_pos;
break;
default:
err = binary_buffer_error(&ctx.bb,
"unknown DWARF expression opcode %#" PRIx8 " after simple location description",
opcode);
goto out;
}
} else {
piece_bit_size = type.bit_size - bit_pos;
piece_bit_offset = 0;
}
/*
* TODO: there are a few cases that a DWARF location can
* describe that can't be represented in drgn's object model:
*
* 1. An object that is partially known and partially unknown.
* 2. An object that is partially in memory and partially a
* value.
* 3. An object that is in memory at non-contiguous addresses.
* 4. A pointer object whose pointer value is not known but
* whose referenced value is known (DW_OP_implicit_pointer).
*
* For case 1, we consider the whole object as absent. For cases
* 2 and 3, we convert the whole object to a value. Case 4 is
* not supported at all. We should add a way to represent all of
* these situations precisely.
*/
if (src && piece_bit_size == 0) {
/* Ignore empty value. */
} else if (src) {
if (!value_buf &&
!drgn_value_zalloc(drgn_value_size(type.bit_size),
&value, &value_buf)) {
err = &drgn_enomem;
goto out;
}
if (bit_offset >= 0) {
/*
* We previously had an address. Read it into
* the value.
*/
err = read_bits(prog, value_buf, 0, address,
bit_offset, bit_pos,
little_endian);
if (err)
goto out;
bit_offset = -1;
}
/*
* It's probably safe to assume that we don't have an
* implicit value larger than 2 exabytes.
*/
assert(src_size <= UINT64_MAX / 8);
uint64_t src_bit_size = UINT64_C(8) * src_size;
if (piece_bit_offset > src_bit_size)
piece_bit_offset = src_bit_size;
uint64_t copy_bit_size =
min(piece_bit_size,
src_bit_size - piece_bit_offset);
uint64_t copy_bit_offset = bit_pos;
if (!little_endian) {
copy_bit_offset += piece_bit_size - copy_bit_size;
piece_bit_offset = (src_bit_size
- copy_bit_size
- piece_bit_offset);
}
copy_bits(&value_buf[copy_bit_offset / 8],
copy_bit_offset % 8,
(const char *)src + (piece_bit_offset / 8),
piece_bit_offset % 8, copy_bit_size,
little_endian);
} else if (stack.size) {
uint64_t piece_address =
((stack.data[stack.size - 1] + piece_bit_offset / 8)
& address_mask);
piece_bit_offset %= 8;
if (bit_pos > 0 && bit_offset >= 0) {
/*
* We already had an address. Merge the pieces
* if the addresses are contiguous, otherwise
* convert to a value.
*
* The obvious way to write this is
* (address + (bit_pos + bit_offset) / 8), but
* (bit_pos + bit_offset) can overflow uint64_t.
*/
uint64_t end_address =
((address
+ bit_pos / 8
+ (bit_pos % 8 + bit_offset) / 8)
& address_mask);
unsigned int end_bit_offset =
(bit_offset + bit_pos) % 8;
if (piece_bit_size == 0 ||
(piece_address == end_address &&
piece_bit_offset == end_bit_offset)) {
/* Piece is contiguous. */
piece_address = address;
piece_bit_offset = bit_offset;
} else {
if (!drgn_value_zalloc(drgn_value_size(type.bit_size),
&value,
&value_buf)) {
err = &drgn_enomem;
goto out;
}
err = read_bits(prog, value_buf, 0,
address, bit_offset,
bit_pos, little_endian);
if (err)
goto out;
bit_offset = -1;
}
}
if (value_buf) {
/* We already have a value. Read into it. */
err = read_bits(prog, &value_buf[bit_pos / 8],
bit_pos % 8, piece_address,
piece_bit_offset,
piece_bit_size, little_endian);
if (err)
goto out;
} else {
address = piece_address;
bit_offset = piece_bit_offset;
}
} else if (piece_bit_size > 0) {
goto absent;
}
bit_pos += piece_bit_size;
} while (binary_buffer_has_next(&ctx.bb));
if (bit_pos < type.bit_size || (bit_offset < 0 && !value_buf)) {
absent:
if (dwarf_tag(die) == DW_TAG_template_value_parameter) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_AT_template_value_parameter is missing value");
}
drgn_object_reinit(ret, &type, DRGN_OBJECT_ABSENT);
err = NULL;
} else if (bit_offset >= 0) {
Dwarf_Addr start, end, bias;
dwfl_module_info(module->dwfl_module, NULL, &start, &end, &bias,
NULL, NULL, NULL);
/*
* If the address is not in the module's address range, then
* it's probably something special like a Linux per-CPU variable
* (which isn't actually a variable address but an offset).
* Don't apply the bias in that case.
*/
if (start <= address + bias && address + bias < end)
address += bias;
err = drgn_object_set_reference_internal(ret, &type, address,
bit_offset);
} else if (type.encoding == DRGN_OBJECT_ENCODING_BUFFER) {
drgn_object_reinit(ret, &type, DRGN_OBJECT_VALUE);
ret->value = value;
value_buf = NULL;
err = NULL;
} else {
err = drgn_object_set_from_buffer_internal(ret, &type,
value_buf, 0);
}
out:
if (value_buf != value.ibuf)
free(value_buf);
uint64_vector_deinit(&stack);
return err;
}
static struct drgn_error *
drgn_object_from_dwarf_constant(struct drgn_debug_info *dbinfo, Dwarf_Die *die,
struct drgn_qualified_type qualified_type,
Dwarf_Attribute *attr, struct drgn_object *ret)
{
struct drgn_object_type type;
struct drgn_error *err = drgn_object_type(qualified_type, 0, &type);
if (err)
return err;
Dwarf_Block block;
if (dwarf_formblock(attr, &block) == 0) {
if (block.length < drgn_value_size(type.bit_size)) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_AT_const_value block is too small");
}
return drgn_object_set_from_buffer_internal(ret, &type,
block.data, 0);
} else if (type.encoding == DRGN_OBJECT_ENCODING_SIGNED) {
Dwarf_Sword svalue;
if (dwarf_formsdata(attr, &svalue)) {
return drgn_error_create(DRGN_ERROR_OTHER,
"invalid DW_AT_const_value");
}
return drgn_object_set_signed_internal(ret, &type, svalue);
} else if (type.encoding == DRGN_OBJECT_ENCODING_UNSIGNED) {
Dwarf_Word uvalue;
if (dwarf_formudata(attr, &uvalue)) {
return drgn_error_create(DRGN_ERROR_OTHER,
"invalid DW_AT_const_value");
}
return drgn_object_set_unsigned_internal(ret, &type, uvalue);
} else {
return drgn_error_create(DRGN_ERROR_OTHER,
"unknown DW_AT_const_value form");
}
}
struct drgn_error *
drgn_object_from_dwarf(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module,
Dwarf_Die *die, Dwarf_Die *type_die,
Dwarf_Die *function_die,
const struct drgn_register_state *regs,
struct drgn_object *ret)
{
struct drgn_error *err;
if (dwarf_tag(die) == DW_TAG_subprogram) {
return drgn_object_from_dwarf_subprogram(dbinfo, module, die,
ret);
}
/*
* The DWARF 5 specifications mentions that data object entries can have
* DW_AT_endianity, but that doesn't seem to be used in practice. It
* would be inconvenient to support, so ignore it for now.
*/
struct drgn_qualified_type qualified_type;
if (type_die) {
err = drgn_type_from_dwarf(dbinfo, module, type_die,
&qualified_type);
} else {
err = drgn_type_from_dwarf_attr(dbinfo, module, die, NULL, true,
true, NULL, &qualified_type);
}
if (err)
return err;
Dwarf_Attribute attr_mem, *attr;
const char *expr;
size_t expr_size;
if ((attr = dwarf_attr_integrate(die, DW_AT_location, &attr_mem))) {
err = drgn_dwarf_location(module, attr, regs, &expr,
&expr_size);
if (err)
return err;
} else if ((attr = dwarf_attr_integrate(die, DW_AT_const_value,
&attr_mem))) {
return drgn_object_from_dwarf_constant(dbinfo, die,
qualified_type, attr,
ret);
} else {
expr = NULL;
expr_size = 0;
}
return drgn_object_from_dwarf_location(dbinfo->prog, module, die,
qualified_type, expr, expr_size,
function_die, regs, ret);
}
static struct drgn_error *find_dwarf_enumerator(Dwarf_Die *enumeration_type,
const char *name,
Dwarf_Die *ret)
{
int r = dwarf_child(enumeration_type, ret);
while (r == 0) {
if (dwarf_tag(ret) == DW_TAG_enumerator &&
strcmp(dwarf_diename(ret), name) == 0)
return NULL;
r = dwarf_siblingof(ret, ret);
}
if (r < 0)
return drgn_error_libdw();
ret->addr = NULL;
return NULL;
}
struct drgn_error *drgn_find_in_dwarf_scopes(Dwarf_Die *scopes,
size_t num_scopes,
const char *name,
Dwarf_Die *die_ret,
Dwarf_Die *type_ret)
{
struct drgn_error *err;
Dwarf_Die die;
for (size_t scope = num_scopes; scope--;) {
bool have_declaration = false;
if (dwarf_child(&scopes[scope], &die) != 0)
continue;
do {
switch (dwarf_tag(&die)) {
case DW_TAG_variable:
case DW_TAG_formal_parameter:
case DW_TAG_subprogram:
if (strcmp(dwarf_diename(&die), name) == 0) {
*die_ret = die;
bool declaration;
if (dwarf_flag(&die, DW_AT_declaration,
&declaration))
return drgn_error_libdw();
if (declaration)
have_declaration = true;
else
return NULL;
}
break;
case DW_TAG_enumeration_type: {
bool enum_class;
if (dwarf_flag_integrate(&die, DW_AT_enum_class,
&enum_class))
return drgn_error_libdw();
if (!enum_class) {
Dwarf_Die enumerator;
err = find_dwarf_enumerator(&die, name,
&enumerator);
if (err)
return err;
if (enumerator.addr) {
*die_ret = enumerator;
*type_ret = die;
return NULL;
}
}
break;
}
default:
continue;
}
} while (dwarf_siblingof(&die, &die) == 0);
if (have_declaration)
return NULL;
}
die_ret->addr = NULL;
return NULL;
}
static struct drgn_error *
drgn_base_type_from_dwarf(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module, Dwarf_Die *die,
const struct drgn_language *lang,
struct drgn_type **ret)
{
struct drgn_error *err;
const char *name = dwarf_diename(die);
if (!name) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_base_type has missing or invalid DW_AT_name");
}
Dwarf_Attribute attr;
Dwarf_Word encoding;
if (!dwarf_attr_integrate(die, DW_AT_encoding, &attr) ||
dwarf_formudata(&attr, &encoding)) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_base_type has missing or invalid DW_AT_encoding");
}
int size = dwarf_bytesize(die);
if (size == -1) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_base_type has missing or invalid DW_AT_byte_size");
}
enum drgn_byte_order byte_order;
err = dwarf_die_byte_order(die, true, &byte_order);
if (err)
return err;
switch (encoding) {
case DW_ATE_boolean:
return drgn_bool_type_create(dbinfo->prog, name, size,
byte_order, lang, ret);
case DW_ATE_float:
return drgn_float_type_create(dbinfo->prog, name, size,
byte_order, lang, ret);
case DW_ATE_signed:
case DW_ATE_signed_char:
return drgn_int_type_create(dbinfo->prog, name, size, true,
byte_order, lang, ret);
case DW_ATE_unsigned:
case DW_ATE_unsigned_char:
case DW_ATE_UTF:
return drgn_int_type_create(dbinfo->prog, name, size, false,
byte_order, lang, ret);
/* We don't support complex types yet. */
case DW_ATE_complex_float:
default:
return drgn_error_format(DRGN_ERROR_OTHER,
"DW_TAG_base_type has unknown DWARF encoding 0x%llx",
(unsigned long long)encoding);
}
}
/*
* DW_TAG_structure_type, DW_TAG_union_type, DW_TAG_class_type, and
* DW_TAG_enumeration_type can be incomplete (i.e., have a DW_AT_declaration of
* true). This tries to find the complete type. If it succeeds, it returns NULL.
* If it can't find a complete type, it returns &drgn_not_found. Otherwise, it
* returns an error.
*/
static struct drgn_error *
drgn_debug_info_find_complete(struct drgn_debug_info *dbinfo, uint64_t tag,
const char *name, struct drgn_type **ret)
{
struct drgn_error *err;
struct drgn_dwarf_index_iterator it;
err = drgn_dwarf_index_iterator_init(&it, &dbinfo->dwarf.global, name,
strlen(name), &tag, 1);
if (err)
return err;
/*
* Find a matching DIE. Note that drgn_dwarf_index does not contain DIEs
* with DW_AT_declaration, so this will always be a complete type.
*/
struct drgn_dwarf_index_die *index_die =
drgn_dwarf_index_iterator_next(&it);
if (!index_die)
return &drgn_not_found;
/*
* Look for another matching DIE. If there is one, then we can't be sure
* which type this is, so leave it incomplete rather than guessing.
*/
if (drgn_dwarf_index_iterator_next(&it))
return &drgn_not_found;
Dwarf_Die die;
err = drgn_dwarf_index_get_die(index_die, &die);
if (err)
return err;
struct drgn_qualified_type qualified_type;
err = drgn_type_from_dwarf(dbinfo, index_die->module, &die,
&qualified_type);
if (err)
return err;
*ret = qualified_type.type;
return NULL;
}
struct drgn_dwarf_member_thunk_arg {
struct drgn_debug_info_module *module;
Dwarf_Die die;
bool can_be_incomplete_array;
};
static struct drgn_error *
drgn_dwarf_member_thunk_fn(struct drgn_object *res, void *arg_)
{
struct drgn_error *err;
struct drgn_dwarf_member_thunk_arg *arg = arg_;
if (res) {
struct drgn_qualified_type qualified_type;
err = drgn_type_from_dwarf_attr(drgn_object_program(res)->dbinfo,
arg->module, &arg->die, NULL,
false,
arg->can_be_incomplete_array,
NULL, &qualified_type);
if (err)
return err;
Dwarf_Attribute attr_mem, *attr;
uint64_t bit_field_size;
if ((attr = dwarf_attr_integrate(&arg->die, DW_AT_bit_size,
&attr_mem))) {
Dwarf_Word bit_size;
if (dwarf_formudata(attr, &bit_size)) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_member has invalid DW_AT_bit_size");
}
bit_field_size = bit_size;
} else {
bit_field_size = 0;
}
err = drgn_object_set_absent(res, qualified_type,
bit_field_size);
if (err)
return err;
}
free(arg);
return NULL;
}
static inline bool drgn_dwarf_attribute_is_block(Dwarf_Attribute *attr)
{
switch (attr->form) {
case DW_FORM_block1:
case DW_FORM_block2:
case DW_FORM_block4:
case DW_FORM_block:
return true;
default:
return false;
}
}
static inline bool drgn_dwarf_attribute_is_ptr(Dwarf_Attribute *attr)
{
switch (attr->form) {
case DW_FORM_sec_offset:
return true;
case DW_FORM_data4:
case DW_FORM_data8: {
/*
* dwarf_cu_die() always returns the DIE. We should use
* dwarf_cu_info(), but that requires elfutils >= 0.171.
*/
Dwarf_Die unused;
Dwarf_Half cu_version;
dwarf_cu_die(attr->cu, &unused, &cu_version, NULL, NULL, NULL,
NULL, NULL);
return cu_version <= 3;
}
default:
return false;
}
}
static struct drgn_error *invalid_data_member_location(struct binary_buffer *bb,
const char *pos,
const char *message)
{
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_member has invalid DW_AT_data_member_location");
}
static struct drgn_error *
drgn_parse_dwarf_data_member_location(Dwarf_Attribute *attr, uint64_t *ret)
{
struct drgn_error *err;
if (drgn_dwarf_attribute_is_block(attr)) {
Dwarf_Block block;
if (dwarf_formblock(attr, &block))
return drgn_error_libdw();
/*
* In DWARF 2, DW_AT_data_member_location is always a location
* description. We can translate a DW_OP_plus_uconst expression
* into a constant offset; other expressions aren't supported
* yet.
*/
struct binary_buffer bb;
/*
* Right now we only parse u8 and ULEB128, so the byte order
* doesn't matter.
*/
binary_buffer_init(&bb, block.data, block.length,
HOST_LITTLE_ENDIAN,
invalid_data_member_location);
uint8_t opcode;
err = binary_buffer_next_u8(&bb, &opcode);
if (err)
return err;
if (opcode != DW_OP_plus_uconst) {
unsupported:
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_member has unsupported DW_AT_data_member_location");
}
err = binary_buffer_next_uleb128(&bb, ret);
if (err)
return err;
if (binary_buffer_has_next(&bb))
goto unsupported;
} else if (drgn_dwarf_attribute_is_ptr(attr)) {
goto unsupported;
} else {
Dwarf_Word word;
if (dwarf_formudata(attr, &word))
return invalid_data_member_location(NULL, NULL, NULL);
*ret = word;
}
return NULL;
}
static struct drgn_error *
parse_member_offset(Dwarf_Die *die, union drgn_lazy_object *member_object,
bool little_endian, uint64_t *ret)
{
struct drgn_error *err;
Dwarf_Attribute attr_mem;
Dwarf_Attribute *attr;
/*
* The simplest case is when we have DW_AT_data_bit_offset, which is
* already the offset in bits from the beginning of the containing
* object to the beginning of the member (which may be a bit field).
*/
attr = dwarf_attr_integrate(die, DW_AT_data_bit_offset, &attr_mem);
if (attr) {
Dwarf_Word bit_offset;
if (dwarf_formudata(attr, &bit_offset)) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_member has invalid DW_AT_data_bit_offset");
}
*ret = bit_offset;
return NULL;
}
/*
* Otherwise, we might have DW_AT_data_member_location, which is the
* offset in bytes from the beginning of the containing object.
*/
attr = dwarf_attr_integrate(die, DW_AT_data_member_location, &attr_mem);
if (attr) {
err = drgn_parse_dwarf_data_member_location(attr, ret);
if (err)
return err;
*ret *= 8;
} else {
*ret = 0;
}
/*
* In addition to DW_AT_data_member_location, a bit field might have
* DW_AT_bit_offset, which is the offset in bits of the most significant
* bit of the bit field from the most significant bit of the containing
* object.
*/
attr = dwarf_attr_integrate(die, DW_AT_bit_offset, &attr_mem);
if (attr) {
Dwarf_Word bit_offset;
if (dwarf_formudata(attr, &bit_offset)) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_member has invalid DW_AT_bit_offset");
}
/*
* If the architecture is little-endian, then we must compute
* the location of the most significant bit from the size of the
* member, then subtract the bit offset and bit size to get the
* location of the beginning of the bit field.
*
* If the architecture is big-endian, then the most significant
* bit of the bit field is the beginning.
*/
if (little_endian) {
err = drgn_lazy_object_evaluate(member_object);
if (err)
return err;
attr = dwarf_attr_integrate(die, DW_AT_byte_size,
&attr_mem);
/*
* If the member has an explicit byte size, we can use
* that. Otherwise, we have to get it from the member
* type.
*/
uint64_t byte_size;
if (attr) {
Dwarf_Word word;
if (dwarf_formudata(attr, &word)) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_member has invalid DW_AT_byte_size");
}
byte_size = word;
} else {
if (!drgn_type_has_size(member_object->obj.type)) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_member bit field type does not have size");
}
err = drgn_type_sizeof(member_object->obj.type,
&byte_size);
if (err)
return err;
}
*ret += 8 * byte_size - bit_offset - member_object->obj.bit_size;
} else {
*ret += bit_offset;
}
}
return NULL;
}
static struct drgn_error *
parse_member(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module, Dwarf_Die *die,
bool little_endian, bool can_be_incomplete_array,
struct drgn_compound_type_builder *builder)
{
struct drgn_error *err;
Dwarf_Attribute attr_mem, *attr;
const char *name;
if ((attr = dwarf_attr_integrate(die, DW_AT_name, &attr_mem))) {
name = dwarf_formstring(attr);
if (!name) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_member has invalid DW_AT_name");
}
} else {
name = NULL;
}
struct drgn_dwarf_member_thunk_arg *thunk_arg =
malloc(sizeof(*thunk_arg));
if (!thunk_arg)
return &drgn_enomem;
thunk_arg->module = module;
thunk_arg->die = *die;
thunk_arg->can_be_incomplete_array = can_be_incomplete_array;
union drgn_lazy_object member_object;
drgn_lazy_object_init_thunk(&member_object, dbinfo->prog,
drgn_dwarf_member_thunk_fn, thunk_arg);
uint64_t bit_offset;
err = parse_member_offset(die, &member_object, little_endian,
&bit_offset);
if (err)
goto err;
err = drgn_compound_type_builder_add_member(builder, &member_object,
name, bit_offset);
if (err)
goto err;
return NULL;
err:
drgn_lazy_object_deinit(&member_object);
return err;
}
struct drgn_dwarf_die_thunk_arg {
struct drgn_debug_info_module *module;
Dwarf_Die die;
};
static struct drgn_error *
drgn_dwarf_template_type_parameter_thunk_fn(struct drgn_object *res, void *arg_)
{
struct drgn_error *err;
struct drgn_dwarf_die_thunk_arg *arg = arg_;
if (res) {
struct drgn_qualified_type qualified_type;
err = drgn_type_from_dwarf_attr(drgn_object_program(res)->dbinfo,
arg->module, &arg->die, NULL,
true, true, NULL,
&qualified_type);
if (err)
return err;
err = drgn_object_set_absent(res, qualified_type, 0);
if (err)
return err;
}
free(arg);
return NULL;
}
static struct drgn_error *
drgn_dwarf_template_value_parameter_thunk_fn(struct drgn_object *res,
void *arg_)
{
struct drgn_error *err;
struct drgn_dwarf_die_thunk_arg *arg = arg_;
if (res) {
err = drgn_object_from_dwarf(drgn_object_program(res)->dbinfo,
arg->module, &arg->die, NULL, NULL,
NULL, res);
if (err)
return err;
}
free(arg);
return NULL;
}
static struct drgn_error *
parse_template_parameter(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module, Dwarf_Die *die,
drgn_object_thunk_fn *thunk_fn,
struct drgn_template_parameters_builder *builder)
{
char tag_buf[DW_TAG_BUF_LEN];
Dwarf_Attribute attr_mem, *attr;
const char *name;
if ((attr = dwarf_attr_integrate(die, DW_AT_name, &attr_mem))) {
name = dwarf_formstring(attr);
if (!name) {
return drgn_error_format(DRGN_ERROR_OTHER,
"%s has invalid DW_AT_name",
dwarf_tag_str(die, tag_buf));
}
} else {
name = NULL;
}
bool defaulted;
if (dwarf_flag_integrate(die, DW_AT_default_value, &defaulted)) {
return drgn_error_format(DRGN_ERROR_OTHER,
"%s has invalid DW_AT_default_value",
dwarf_tag_str(die, tag_buf));
}
struct drgn_dwarf_die_thunk_arg *thunk_arg =
malloc(sizeof(*thunk_arg));
if (!thunk_arg)
return &drgn_enomem;
thunk_arg->module = module;
thunk_arg->die = *die;
union drgn_lazy_object argument;
drgn_lazy_object_init_thunk(&argument, dbinfo->prog, thunk_fn,
thunk_arg);
struct drgn_error *err =
drgn_template_parameters_builder_add(builder, &argument, name,
defaulted);
if (err)
drgn_lazy_object_deinit(&argument);
return err;
}
static struct drgn_error *
drgn_compound_type_from_dwarf(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module,
Dwarf_Die *die, const struct drgn_language *lang,
enum drgn_type_kind kind, struct drgn_type **ret)
{
struct drgn_error *err;
char tag_buf[DW_TAG_BUF_LEN];
Dwarf_Attribute attr_mem;
Dwarf_Attribute *attr = dwarf_attr_integrate(die, DW_AT_name,
&attr_mem);
const char *tag;
if (attr) {
tag = dwarf_formstring(attr);
if (!tag) {
return drgn_error_format(DRGN_ERROR_OTHER,
"%s has invalid DW_AT_name",
dwarf_tag_str(die, tag_buf));
}
} else {
tag = NULL;
}
bool declaration;
if (dwarf_flag(die, DW_AT_declaration, &declaration)) {
return drgn_error_format(DRGN_ERROR_OTHER,
"%s has invalid DW_AT_declaration",
dwarf_tag_str(die, tag_buf));
}
if (declaration && tag) {
err = drgn_debug_info_find_complete(dbinfo, dwarf_tag(die), tag,
ret);
if (err != &drgn_not_found)
return err;
}
struct drgn_compound_type_builder builder;
drgn_compound_type_builder_init(&builder, dbinfo->prog, kind);
int size;
bool little_endian;
if (declaration) {
size = 0;
} else {
size = dwarf_bytesize(die);
if (size == -1) {
return drgn_error_format(DRGN_ERROR_OTHER,
"%s has missing or invalid DW_AT_byte_size",
dwarf_tag_str(die, tag_buf));
}
dwarf_die_is_little_endian(die, false, &little_endian);
}
Dwarf_Die member = {}, child;
int r = dwarf_child(die, &child);
while (r == 0) {
switch (dwarf_tag(&child)) {
case DW_TAG_member:
if (!declaration) {
if (member.addr) {
err = parse_member(dbinfo, module,
&member,
little_endian, false,
&builder);
if (err)
goto err;
}
member = child;
}
break;
case DW_TAG_template_type_parameter:
err = parse_template_parameter(dbinfo, module, &child,
drgn_dwarf_template_type_parameter_thunk_fn,
&builder.template_builder);
if (err)
goto err;
break;
case DW_TAG_template_value_parameter:
err = parse_template_parameter(dbinfo, module, &child,
drgn_dwarf_template_value_parameter_thunk_fn,
&builder.template_builder);
if (err)
goto err;
break;
default:
break;
}
r = dwarf_siblingof(&child, &child);
}
if (r == -1) {
err = drgn_error_create(DRGN_ERROR_OTHER,
"libdw could not parse DIE children");
goto err;
}
/*
* Flexible array members are only allowed as the last member of a
* structure with at least one other member.
*/
if (member.addr) {
err = parse_member(dbinfo, module, &member, little_endian,
kind != DRGN_TYPE_UNION &&
builder.members.size > 0,
&builder);
if (err)
goto err;
}
err = drgn_compound_type_create(&builder, tag, size, !declaration, lang,
ret);
if (err)
goto err;
return NULL;
err:
drgn_compound_type_builder_deinit(&builder);
return err;
}
static struct drgn_error *
parse_enumerator(Dwarf_Die *die, struct drgn_enum_type_builder *builder,
bool *is_signed)
{
const char *name = dwarf_diename(die);
if (!name) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_enumerator has missing or invalid DW_AT_name");
}
Dwarf_Attribute attr_mem, *attr;
if (!(attr = dwarf_attr_integrate(die, DW_AT_const_value, &attr_mem))) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_enumerator is missing DW_AT_const_value");
}
struct drgn_error *err;
if (attr->form == DW_FORM_sdata ||
attr->form == DW_FORM_implicit_const) {
Dwarf_Sword svalue;
if (dwarf_formsdata(attr, &svalue))
goto invalid;
err = drgn_enum_type_builder_add_signed(builder, name,
svalue);
/*
* GCC before 7.1 didn't include DW_AT_encoding for
* DW_TAG_enumeration_type DIEs, so we have to guess the sign
* for enum_compatible_type_fallback().
*/
if (!err && svalue < 0)
*is_signed = true;
} else {
Dwarf_Word uvalue;
if (dwarf_formudata(attr, &uvalue))
goto invalid;
err = drgn_enum_type_builder_add_unsigned(builder, name,
uvalue);
}
return err;
invalid:
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_enumerator has invalid DW_AT_const_value");
}
/*
* GCC before 5.1 did not include DW_AT_type for DW_TAG_enumeration_type DIEs,
* so we have to fabricate the compatible type.
*/
static struct drgn_error *
enum_compatible_type_fallback(struct drgn_debug_info *dbinfo,
Dwarf_Die *die, bool is_signed,
const struct drgn_language *lang,
struct drgn_type **ret)
{
int size = dwarf_bytesize(die);
if (size == -1) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_enumeration_type has missing or invalid DW_AT_byte_size");
}
enum drgn_byte_order byte_order;
dwarf_die_byte_order(die, false, &byte_order);
return drgn_int_type_create(dbinfo->prog, "<unknown>", size, is_signed,
byte_order, lang, ret);
}
static struct drgn_error *
drgn_enum_type_from_dwarf(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module, Dwarf_Die *die,
const struct drgn_language *lang,
struct drgn_type **ret)
{
struct drgn_error *err;
Dwarf_Attribute attr_mem;
Dwarf_Attribute *attr = dwarf_attr_integrate(die, DW_AT_name,
&attr_mem);
const char *tag;
if (attr) {
tag = dwarf_formstring(attr);
if (!tag)
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_enumeration_type has invalid DW_AT_name");
} else {
tag = NULL;
}
bool declaration;
if (dwarf_flag(die, DW_AT_declaration, &declaration)) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_enumeration_type has invalid DW_AT_declaration");
}
if (declaration && tag) {
err = drgn_debug_info_find_complete(dbinfo,
DW_TAG_enumeration_type,
tag, ret);
if (err != &drgn_not_found)
return err;
}
if (declaration) {
return drgn_incomplete_enum_type_create(dbinfo->prog, tag, lang,
ret);
}
struct drgn_enum_type_builder builder;
drgn_enum_type_builder_init(&builder, dbinfo->prog);
bool is_signed = false;
Dwarf_Die child;
int r = dwarf_child(die, &child);
while (r == 0) {
if (dwarf_tag(&child) == DW_TAG_enumerator) {
err = parse_enumerator(&child, &builder, &is_signed);
if (err)
goto err;
}
r = dwarf_siblingof(&child, &child);
}
if (r == -1) {
err = drgn_error_create(DRGN_ERROR_OTHER,
"libdw could not parse DIE children");
goto err;
}
struct drgn_type *compatible_type;
r = dwarf_type(die, &child);
if (r == -1) {
err = drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_enumeration_type has invalid DW_AT_type");
goto err;
} else if (r) {
err = enum_compatible_type_fallback(dbinfo, die, is_signed,
lang, &compatible_type);
if (err)
goto err;
} else {
struct drgn_qualified_type qualified_compatible_type;
err = drgn_type_from_dwarf(dbinfo, module, &child,
&qualified_compatible_type);
if (err)
goto err;
compatible_type =
drgn_underlying_type(qualified_compatible_type.type);
if (drgn_type_kind(compatible_type) != DRGN_TYPE_INT) {
err = drgn_error_create(DRGN_ERROR_OTHER,
"DW_AT_type of DW_TAG_enumeration_type is not an integer type");
goto err;
}
}
err = drgn_enum_type_create(&builder, tag, compatible_type, lang, ret);
if (err)
goto err;
return NULL;
err:
drgn_enum_type_builder_deinit(&builder);
return err;
}
static struct drgn_error *
drgn_typedef_type_from_dwarf(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module,
Dwarf_Die *die, const struct drgn_language *lang,
bool can_be_incomplete_array,
bool *is_incomplete_array_ret,
struct drgn_type **ret)
{
const char *name = dwarf_diename(die);
if (!name) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_typedef has missing or invalid DW_AT_name");
}
struct drgn_qualified_type aliased_type;
struct drgn_error *err = drgn_type_from_dwarf_attr(dbinfo, module, die,
lang, true,
can_be_incomplete_array,
is_incomplete_array_ret,
&aliased_type);
if (err)
return err;
return drgn_typedef_type_create(dbinfo->prog, name, aliased_type, lang,
ret);
}
static struct drgn_error *
drgn_pointer_type_from_dwarf(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module,
Dwarf_Die *die, const struct drgn_language *lang,
struct drgn_type **ret)
{
struct drgn_qualified_type referenced_type;
struct drgn_error *err = drgn_type_from_dwarf_attr(dbinfo, module, die,
lang, true, true,
NULL,
&referenced_type);
if (err)
return err;
Dwarf_Attribute attr_mem, *attr;
uint64_t size;
if ((attr = dwarf_attr_integrate(die, DW_AT_byte_size, &attr_mem))) {
Dwarf_Word word;
if (dwarf_formudata(attr, &word)) {
return drgn_error_format(DRGN_ERROR_OTHER,
"DW_TAG_pointer_type has invalid DW_AT_byte_size");
}
size = word;
} else {
uint8_t address_size;
err = drgn_program_address_size(dbinfo->prog, &address_size);
if (err)
return err;
size = address_size;
}
/*
* The DWARF 5 specification doesn't mention DW_AT_endianity for
* DW_TAG_pointer_type DIEs, and GCC as of version 10.2 doesn't emit it
* even for pointers stored in the opposite byte order (e.g., when using
* scalar_storage_order), but it probably should.
*/
enum drgn_byte_order byte_order;
dwarf_die_byte_order(die, false, &byte_order);
return drgn_pointer_type_create(dbinfo->prog, referenced_type, size,
byte_order, lang, ret);
}
struct array_dimension {
uint64_t length;
bool is_complete;
};
DEFINE_VECTOR(array_dimension_vector, struct array_dimension)
static struct drgn_error *subrange_length(Dwarf_Die *die,
struct array_dimension *dimension)
{
Dwarf_Attribute attr_mem;
Dwarf_Attribute *attr;
Dwarf_Word word;
if (!(attr = dwarf_attr_integrate(die, DW_AT_upper_bound, &attr_mem)) &&
!(attr = dwarf_attr_integrate(die, DW_AT_count, &attr_mem))) {
dimension->is_complete = false;
return NULL;
}
if (dwarf_formudata(attr, &word)) {
return drgn_error_format(DRGN_ERROR_OTHER,
"DW_TAG_subrange_type has invalid %s",
attr->code == DW_AT_upper_bound ?
"DW_AT_upper_bound" :
"DW_AT_count");
}
dimension->is_complete = true;
/*
* GCC emits a DW_FORM_sdata DW_AT_upper_bound of -1 for empty array
* variables without an explicit size (e.g., `int arr[] = {};`).
*/
if (attr->code == DW_AT_upper_bound && attr->form == DW_FORM_sdata &&
word == (Dwarf_Word)-1) {
dimension->length = 0;
} else if (attr->code == DW_AT_upper_bound) {
if (word >= UINT64_MAX) {
return drgn_error_create(DRGN_ERROR_OVERFLOW,
"DW_AT_upper_bound is too large");
}
dimension->length = (uint64_t)word + 1;
} else {
if (word > UINT64_MAX) {
return drgn_error_create(DRGN_ERROR_OVERFLOW,
"DW_AT_count is too large");
}
dimension->length = word;
}
return NULL;
}
static struct drgn_error *
drgn_array_type_from_dwarf(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module,
Dwarf_Die *die, const struct drgn_language *lang,
bool can_be_incomplete_array,
bool *is_incomplete_array_ret,
struct drgn_type **ret)
{
struct drgn_error *err;
struct array_dimension_vector dimensions = VECTOR_INIT;
struct array_dimension *dimension;
Dwarf_Die child;
int r = dwarf_child(die, &child);
while (r == 0) {
if (dwarf_tag(&child) == DW_TAG_subrange_type) {
dimension = array_dimension_vector_append_entry(&dimensions);
if (!dimension) {
err = &drgn_enomem;
goto out;
}
err = subrange_length(&child, dimension);
if (err)
goto out;
}
r = dwarf_siblingof(&child, &child);
}
if (r == -1) {
err = drgn_error_create(DRGN_ERROR_OTHER,
"libdw could not parse DIE children");
goto out;
}
if (!dimensions.size) {
dimension = array_dimension_vector_append_entry(&dimensions);
if (!dimension) {
err = &drgn_enomem;
goto out;
}
dimension->is_complete = false;
}
struct drgn_qualified_type element_type;
err = drgn_type_from_dwarf_attr(dbinfo, module, die, lang, false, false,
NULL, &element_type);
if (err)
goto out;
*is_incomplete_array_ret = !dimensions.data[0].is_complete;
struct drgn_type *type;
do {
dimension = array_dimension_vector_pop(&dimensions);
if (dimension->is_complete) {
err = drgn_array_type_create(dbinfo->prog, element_type,
dimension->length, lang,
&type);
} else if (dimensions.size || !can_be_incomplete_array) {
err = drgn_array_type_create(dbinfo->prog, element_type,
0, lang, &type);
} else {
err = drgn_incomplete_array_type_create(dbinfo->prog,
element_type,
lang, &type);
}
if (err)
goto out;
element_type.type = type;
element_type.qualifiers = 0;
} while (dimensions.size);
*ret = type;
err = NULL;
out:
array_dimension_vector_deinit(&dimensions);
return err;
}
static struct drgn_error *
drgn_dwarf_formal_parameter_thunk_fn(struct drgn_object *res, void *arg_)
{
struct drgn_error *err;
struct drgn_dwarf_die_thunk_arg *arg = arg_;
if (res) {
struct drgn_qualified_type qualified_type;
err = drgn_type_from_dwarf_attr(drgn_object_program(res)->dbinfo,
arg->module, &arg->die, NULL,
false, true, NULL,
&qualified_type);
if (err)
return err;
err = drgn_object_set_absent(res, qualified_type, 0);
if (err)
return err;
}
free(arg);
return NULL;
}
static struct drgn_error *
parse_formal_parameter(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module, Dwarf_Die *die,
struct drgn_function_type_builder *builder)
{
Dwarf_Attribute attr_mem, *attr;
const char *name;
if ((attr = dwarf_attr_integrate(die, DW_AT_name, &attr_mem))) {
name = dwarf_formstring(attr);
if (!name) {
return drgn_error_create(DRGN_ERROR_OTHER,
"DW_TAG_formal_parameter has invalid DW_AT_name");
}
} else {
name = NULL;
}
struct drgn_dwarf_die_thunk_arg *thunk_arg =
malloc(sizeof(*thunk_arg));
if (!thunk_arg)
return &drgn_enomem;
thunk_arg->module = module;
thunk_arg->die = *die;
union drgn_lazy_object default_argument;
drgn_lazy_object_init_thunk(&default_argument, dbinfo->prog,
drgn_dwarf_formal_parameter_thunk_fn,
thunk_arg);
struct drgn_error *err =
drgn_function_type_builder_add_parameter(builder,
&default_argument,
name);
if (err)
drgn_lazy_object_deinit(&default_argument);
return err;
}
static struct drgn_error *
drgn_function_type_from_dwarf(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module,
Dwarf_Die *die, const struct drgn_language *lang,
struct drgn_type **ret)
{
struct drgn_error *err;
char tag_buf[DW_TAG_BUF_LEN];
struct drgn_function_type_builder builder;
drgn_function_type_builder_init(&builder, dbinfo->prog);
bool is_variadic = false;
Dwarf_Die child;
int r = dwarf_child(die, &child);
while (r == 0) {
switch (dwarf_tag(&child)) {
case DW_TAG_formal_parameter:
if (is_variadic) {
err = drgn_error_format(DRGN_ERROR_OTHER,
"%s has DW_TAG_formal_parameter child after DW_TAG_unspecified_parameters child",
dwarf_tag_str(die,
tag_buf));
goto err;
}
err = parse_formal_parameter(dbinfo, module, &child,
&builder);
if (err)
goto err;
break;
case DW_TAG_unspecified_parameters:
if (is_variadic) {
err = drgn_error_format(DRGN_ERROR_OTHER,
"%s has multiple DW_TAG_unspecified_parameters children",
dwarf_tag_str(die,
tag_buf));
goto err;
}
is_variadic = true;
break;
case DW_TAG_template_type_parameter:
err = parse_template_parameter(dbinfo, module, &child,
drgn_dwarf_template_type_parameter_thunk_fn,
&builder.template_builder);
if (err)
goto err;
break;
case DW_TAG_template_value_parameter:
err = parse_template_parameter(dbinfo, module, &child,
drgn_dwarf_template_value_parameter_thunk_fn,
&builder.template_builder);
if (err)
goto err;
break;
default:
break;
}
r = dwarf_siblingof(&child, &child);
}
if (r == -1) {
err = drgn_error_create(DRGN_ERROR_OTHER,
"libdw could not parse DIE children");
goto err;
}
struct drgn_qualified_type return_type;
err = drgn_type_from_dwarf_attr(dbinfo, module, die, lang, true, true,
NULL, &return_type);
if (err)
goto err;
err = drgn_function_type_create(&builder, return_type, is_variadic,
lang, ret);
if (err)
goto err;
return NULL;
err:
drgn_function_type_builder_deinit(&builder);
return err;
}
static struct drgn_error *
drgn_type_from_dwarf_internal(struct drgn_debug_info *dbinfo,
struct drgn_debug_info_module *module,
Dwarf_Die *die, bool can_be_incomplete_array,
bool *is_incomplete_array_ret,
struct drgn_qualified_type *ret)
{
if (dbinfo->dwarf.depth >= 1000) {
return drgn_error_create(DRGN_ERROR_RECURSION,
"maximum DWARF type parsing depth exceeded");
}
/* If the DIE has a type unit signature, follow it. */
Dwarf_Die definition_die;
{
Dwarf_Attribute attr_mem, *attr;
if ((attr = dwarf_attr_integrate(die, DW_AT_signature,
&attr_mem))) {
if (!dwarf_formref_die(attr, &definition_die))
return drgn_error_libdw();
die = &definition_die;
}
}
/* If we got a declaration, try to find the definition. */
bool declaration;
if (dwarf_flag(die, DW_AT_declaration, &declaration))
return drgn_error_libdw();
if (declaration) {
uintptr_t die_addr;
if (drgn_dwarf_find_definition(dbinfo, (uintptr_t)die->addr,
&module, &die_addr)) {
Dwarf_Addr bias;
Dwarf *dwarf = dwfl_module_getdwarf(module->dwfl_module,
&bias);
if (!dwarf)
return drgn_error_libdwfl();
uintptr_t start =
(uintptr_t)module->scn_data[DRGN_SCN_DEBUG_INFO]->d_buf;
size_t size =
module->scn_data[DRGN_SCN_DEBUG_INFO]->d_size;
if (die_addr >= start && die_addr < start + size) {
if (!dwarf_offdie(dwarf, die_addr - start,
&definition_die))
return drgn_error_libdw();
} else {
start = (uintptr_t)module->scn_data[DRGN_SCN_DEBUG_TYPES]->d_buf;
/* Assume .debug_types */
if (!dwarf_offdie_types(dwarf, die_addr - start,
&definition_die))
return drgn_error_libdw();
}
die = &definition_die;
}
}
struct drgn_dwarf_type_map_entry entry = {
.key = die->addr,
};
struct hash_pair hp = drgn_dwarf_type_map_hash(&entry.key);
struct drgn_dwarf_type_map_iterator it =
drgn_dwarf_type_map_search_hashed(&dbinfo->dwarf.types,
&entry.key, hp);
if (it.entry) {
if (!can_be_incomplete_array &&
it.entry->value.is_incomplete_array) {
it = drgn_dwarf_type_map_search_hashed(&dbinfo->dwarf.cant_be_incomplete_array_types,
&entry.key, hp);
}
if (it.entry) {
ret->type = it.entry->value.type;
ret->qualifiers = it.entry->value.qualifiers;
return NULL;
}
}
const struct drgn_language *lang;
struct drgn_error *err = drgn_language_from_die(die, true, &lang);
if (err)
return err;
ret->qualifiers = 0;
dbinfo->dwarf.depth++;
entry.value.is_incomplete_array = false;
switch (dwarf_tag(die)) {
case DW_TAG_const_type:
err = drgn_type_from_dwarf_attr(dbinfo, module, die, lang, true,
can_be_incomplete_array,
&entry.value.is_incomplete_array,
ret);
ret->qualifiers |= DRGN_QUALIFIER_CONST;
break;
case DW_TAG_restrict_type:
err = drgn_type_from_dwarf_attr(dbinfo, module, die, lang, true,
can_be_incomplete_array,
&entry.value.is_incomplete_array,
ret);
ret->qualifiers |= DRGN_QUALIFIER_RESTRICT;
break;
case DW_TAG_volatile_type:
err = drgn_type_from_dwarf_attr(dbinfo, module, die, lang, true,
can_be_incomplete_array,
&entry.value.is_incomplete_array,
ret);
ret->qualifiers |= DRGN_QUALIFIER_VOLATILE;
break;
case DW_TAG_atomic_type:
err = drgn_type_from_dwarf_attr(dbinfo, module, die, lang, true,
can_be_incomplete_array,
&entry.value.is_incomplete_array,
ret);
ret->qualifiers |= DRGN_QUALIFIER_ATOMIC;
break;
case DW_TAG_base_type:
err = drgn_base_type_from_dwarf(dbinfo, module, die, lang,
&ret->type);
break;
case DW_TAG_structure_type:
err = drgn_compound_type_from_dwarf(dbinfo, module, die, lang,
DRGN_TYPE_STRUCT,
&ret->type);
break;
case DW_TAG_union_type:
err = drgn_compound_type_from_dwarf(dbinfo, module, die, lang,
DRGN_TYPE_UNION,
&ret->type);
break;
case DW_TAG_class_type:
err = drgn_compound_type_from_dwarf(dbinfo, module, die, lang,
DRGN_TYPE_CLASS,
&ret->type);
break;
case DW_TAG_enumeration_type:
err = drgn_enum_type_from_dwarf(dbinfo, module, die, lang,
&ret->type);
break;
case DW_TAG_typedef:
err = drgn_typedef_type_from_dwarf(dbinfo, module, die, lang,
can_be_incomplete_array,
&entry.value.is_incomplete_array,
&ret->type);
break;
case DW_TAG_pointer_type:
err = drgn_pointer_type_from_dwarf(dbinfo, module, die, lang,
&ret->type);
break;
case DW_TAG_array_type:
err = drgn_array_type_from_dwarf(dbinfo, module, die, lang,
can_be_incomplete_array,
&entry.value.is_incomplete_array,
&ret->type);
break;
case DW_TAG_subroutine_type:
case DW_TAG_subprogram:
err = drgn_function_type_from_dwarf(dbinfo, module, die, lang,
&ret->type);
break;
default:
err = drgn_error_format(DRGN_ERROR_OTHER,
"unknown DWARF type tag 0x%x",
dwarf_tag(die));
break;
}
dbinfo->dwarf.depth--;
if (err)
return err;
entry.value.type = ret->type;
entry.value.qualifiers = ret->qualifiers;
struct drgn_dwarf_type_map *map;
if (!can_be_incomplete_array && entry.value.is_incomplete_array)
map = &dbinfo->dwarf.cant_be_incomplete_array_types;
else
map = &dbinfo->dwarf.types;
if (drgn_dwarf_type_map_insert_searched(map, &entry, hp, NULL) == -1) {
/*
* This will "leak" the type we created, but it'll still be
* cleaned up when the program is freed.
*/
return &drgn_enomem;
}
if (is_incomplete_array_ret)
*is_incomplete_array_ret = entry.value.is_incomplete_array;
return NULL;
}
struct drgn_error *drgn_debug_info_find_type(enum drgn_type_kind kind,
const char *name, size_t name_len,
const char *filename, void *arg,
struct drgn_qualified_type *ret)
{
struct drgn_error *err;
struct drgn_debug_info *dbinfo = arg;
uint64_t tag;
switch (kind) {
case DRGN_TYPE_INT:
case DRGN_TYPE_BOOL:
case DRGN_TYPE_FLOAT:
tag = DW_TAG_base_type;
break;
case DRGN_TYPE_STRUCT:
tag = DW_TAG_structure_type;
break;
case DRGN_TYPE_UNION:
tag = DW_TAG_union_type;
break;
case DRGN_TYPE_CLASS:
tag = DW_TAG_class_type;
break;
case DRGN_TYPE_ENUM:
tag = DW_TAG_enumeration_type;
break;
case DRGN_TYPE_TYPEDEF:
tag = DW_TAG_typedef;
break;
default:
UNREACHABLE();
}
struct drgn_dwarf_index_iterator it;
err = drgn_dwarf_index_iterator_init(&it, &dbinfo->dwarf.global, name,
name_len, &tag, 1);
if (err)
return err;
struct drgn_dwarf_index_die *index_die;
while ((index_die = drgn_dwarf_index_iterator_next(&it))) {
Dwarf_Die die;
err = drgn_dwarf_index_get_die(index_die, &die);
if (err)
return err;
if (die_matches_filename(&die, filename)) {
err = drgn_type_from_dwarf(dbinfo, index_die->module,
&die, ret);
if (err)
return err;
/*
* For DW_TAG_base_type, we need to check that the type
* we found was the right kind.
*/
if (drgn_type_kind(ret->type) == kind)
return NULL;
}
}
return &drgn_not_found;
}
struct drgn_error *
drgn_debug_info_find_object(const char *name, size_t name_len,
const char *filename,
enum drgn_find_object_flags flags, void *arg,
struct drgn_object *ret)
{
struct drgn_error *err;
struct drgn_debug_info *dbinfo = arg;
struct drgn_namespace_dwarf_index *ns = &dbinfo->dwarf.global;
if (name_len >= 2 && memcmp(name, "::", 2) == 0) {
/* Explicit global namespace. */
name_len -= 2;
name += 2;
}
const char *colons;
while ((colons = memmem(name, name_len, "::", 2))) {
struct drgn_dwarf_index_iterator it;
uint64_t ns_tag = DW_TAG_namespace;
err = drgn_dwarf_index_iterator_init(&it, ns, name,
colons - name, &ns_tag, 1);
if (err)
return err;
struct drgn_dwarf_index_die *index_die =
drgn_dwarf_index_iterator_next(&it);
if (!index_die)
return &drgn_not_found;
ns = index_die->namespace;
name_len -= colons + 2 - name;
name = colons + 2;
}
uint64_t tags[3];
size_t num_tags = 0;
if (flags & DRGN_FIND_OBJECT_CONSTANT)
tags[num_tags++] = DW_TAG_enumerator;
if (flags & DRGN_FIND_OBJECT_FUNCTION)
tags[num_tags++] = DW_TAG_subprogram;
if (flags & DRGN_FIND_OBJECT_VARIABLE)
tags[num_tags++] = DW_TAG_variable;
struct drgn_dwarf_index_iterator it;
err = drgn_dwarf_index_iterator_init(&it, ns, name, name_len, tags,
num_tags);
if (err)
return err;
struct drgn_dwarf_index_die *index_die;
while ((index_die = drgn_dwarf_index_iterator_next(&it))) {
Dwarf_Die die;
err = drgn_dwarf_index_get_die(index_die, &die);
if (err)
return err;
if (!die_matches_filename(&die, filename))
continue;
if (dwarf_tag(&die) == DW_TAG_enumeration_type) {
return drgn_object_from_dwarf_enumerator(dbinfo,
index_die->module,
&die, name,
ret);
} else {
return drgn_object_from_dwarf(dbinfo, index_die->module,
&die, NULL, NULL, NULL,
ret);
}
}
return &drgn_not_found;
}
/*
* Call frame information.
*/
struct drgn_dwarf_cie {
/* Whether this CIE is from .eh_frame. */
bool is_eh;
/* Size of an address in this CIE in bytes. */
uint8_t address_size;
/* DW_EH_PE_* encoding of addresses in this CIE. */
uint8_t address_encoding;
/* Whether this CIE has a 'z' augmentation. */
bool have_augmentation_length;
/* Whether this CIE is for a signal handler ('S' augmentation). */
bool signal_frame;
drgn_register_number return_address_register;
uint64_t code_alignment_factor;
int64_t data_alignment_factor;
const char *initial_instructions;
size_t initial_instructions_size;
};
DEFINE_VECTOR(drgn_dwarf_fde_vector, struct drgn_dwarf_fde)
DEFINE_VECTOR(drgn_dwarf_cie_vector, struct drgn_dwarf_cie)
DEFINE_HASH_MAP(drgn_dwarf_cie_map, size_t, size_t, int_key_hash_pair,
scalar_key_eq)
static struct drgn_error *
drgn_dwarf_cfi_next_encoded(struct drgn_debug_info_buffer *buffer,
uint8_t address_size, uint8_t encoding,
uint64_t func_addr, uint64_t *ret)
{
struct drgn_error *err;
/* Not currently used for CFI. */
if (encoding & DW_EH_PE_indirect) {
unknown_fde_encoding:
return binary_buffer_error(&buffer->bb,
"unknown EH encoding %#" PRIx8,
encoding);
}
size_t pos = (buffer->bb.pos -
(char *)buffer->module->scn_data[buffer->scn]->d_buf);
uint64_t base;
switch (encoding & 0x70) {
case DW_EH_PE_absptr:
base = 0;
break;
case DW_EH_PE_pcrel:
base = buffer->module->dwarf.pcrel_base + pos;
break;
case DW_EH_PE_textrel:
base = buffer->module->dwarf.textrel_base;
break;
case DW_EH_PE_datarel:
base = buffer->module->dwarf.datarel_base;
break;
case DW_EH_PE_funcrel:
/* Relative to the FDE's initial location. */
base = func_addr;
break;
case DW_EH_PE_aligned:
base = 0;
if (pos % address_size != 0 &&
(err = binary_buffer_skip(&buffer->bb,
address_size - pos % address_size)))
return err;
break;
default:
goto unknown_fde_encoding;
}
uint64_t offset;
switch (encoding & 0xf) {
case DW_EH_PE_absptr:
if ((err = binary_buffer_next_uint(&buffer->bb, address_size,
&offset)))
return err;
break;
case DW_EH_PE_uleb128:
if ((err = binary_buffer_next_uleb128(&buffer->bb, &offset)))
return err;
break;
case DW_EH_PE_udata2:
if ((err = binary_buffer_next_u16_into_u64(&buffer->bb,
&offset)))
return err;
break;
case DW_EH_PE_udata4:
if ((err = binary_buffer_next_u32_into_u64(&buffer->bb,
&offset)))
return err;
break;
case DW_EH_PE_udata8:
if ((err = binary_buffer_next_u64(&buffer->bb, &offset)))
return err;
break;
case DW_EH_PE_sleb128:
if ((err = binary_buffer_next_sleb128_into_u64(&buffer->bb,
&offset)))
return err;
break;
case DW_EH_PE_sdata2:
if ((err = binary_buffer_next_s16_into_u64(&buffer->bb,
&offset)))
return err;
break;
case DW_EH_PE_sdata4:
if ((err = binary_buffer_next_s32_into_u64(&buffer->bb,
&offset)))
return err;
break;
case DW_EH_PE_sdata8:
if ((err = binary_buffer_next_s64_into_u64(&buffer->bb,
&offset)))
return err;
break;
default:
goto unknown_fde_encoding;
}
*ret = (base + offset) & uint_max(address_size);
return NULL;
}
static struct drgn_error *
drgn_parse_dwarf_cie(struct drgn_debug_info_module *module,
enum drgn_debug_info_scn scn, size_t cie_pointer,
struct drgn_dwarf_cie *cie)
{
bool is_eh = scn == DRGN_SCN_EH_FRAME;
struct drgn_error *err;
cie->is_eh = is_eh;
struct drgn_debug_info_buffer buffer;
drgn_debug_info_buffer_init(&buffer, module, scn);
buffer.bb.pos += cie_pointer;
uint32_t tmp;
if ((err = binary_buffer_next_u32(&buffer.bb, &tmp)))
return err;
bool is_64_bit = tmp == UINT32_C(0xffffffff);
uint64_t length;
if (is_64_bit) {
if ((err = binary_buffer_next_u64(&buffer.bb, &length)))
return err;
} else {
length = tmp;
}
if (length > buffer.bb.end - buffer.bb.pos) {
return binary_buffer_error(&buffer.bb,
"entry length is out of bounds");
}
buffer.bb.end = buffer.bb.pos + length;
uint64_t cie_id, expected_cie_id;
if (is_64_bit) {
if ((err = binary_buffer_next_u64(&buffer.bb, &cie_id)))
return err;
expected_cie_id = is_eh ? 0 : UINT64_C(0xffffffffffffffff);
} else {
if ((err = binary_buffer_next_u32_into_u64(&buffer.bb,
&cie_id)))
return err;
expected_cie_id = is_eh ? 0 : UINT64_C(0xffffffff);
}
if (cie_id != expected_cie_id)
return binary_buffer_error(&buffer.bb, "invalid CIE ID");
uint8_t version;
if ((err = binary_buffer_next_u8(&buffer.bb, &version)))
return err;
if (version < 1 || version == 2 || version > 4) {
return binary_buffer_error(&buffer.bb,
"unknown CIE version %" PRIu8,
version);
}
const char *augmentation;
size_t augmentation_len;
if ((err = binary_buffer_next_string(&buffer.bb, &augmentation,
&augmentation_len)))
return err;
cie->have_augmentation_length = augmentation[0] == 'z';
cie->signal_frame = false;
for (size_t i = 0; i < augmentation_len; i++) {
switch (augmentation[i]) {
case 'z':
if (i != 0)
goto unknown_augmentation;
break;
case 'L':
case 'P':
case 'R':
if (augmentation[0] != 'z')
goto unknown_augmentation;
break;
case 'S':
cie->signal_frame = true;
break;
default:
unknown_augmentation:
/*
* We could ignore this CIE and all FDEs that reference
* it or skip the augmentation if we have its length,
* but let's fail loudly so that we find out about
* missing support.
*/
return binary_buffer_error_at(&buffer.bb,
&augmentation[i],
"unknown CFI augmentation %s",
augmentation);
}
}
if (version >= 4) {
if ((err = binary_buffer_next_u8(&buffer.bb,
&cie->address_size)))
return err;
if (cie->address_size < 1 || cie->address_size > 8) {
return binary_buffer_error(&buffer.bb,
"unsupported address size %" PRIu8,
cie->address_size);
}
uint8_t segment_selector_size;
if ((err = binary_buffer_next_u8(&buffer.bb,
&segment_selector_size)))
return err;
if (segment_selector_size) {
return binary_buffer_error(&buffer.bb,
"unsupported segment selector size %" PRIu8,
segment_selector_size);
}
} else {
cie->address_size =
drgn_platform_address_size(&module->platform);
}
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&cie->code_alignment_factor)) ||
(err = binary_buffer_next_sleb128(&buffer.bb,
&cie->data_alignment_factor)))
return err;
uint64_t return_address_register;
if (version >= 3) {
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&return_address_register)))
return err;
} else {
if ((err = binary_buffer_next_u8_into_u64(&buffer.bb,
&return_address_register)))
return err;
}
cie->return_address_register =
module->platform.arch->dwarf_regno_to_internal(return_address_register);
if (cie->return_address_register == DRGN_REGISTER_NUMBER_UNKNOWN) {
return binary_buffer_error(&buffer.bb,
"unknown return address register");
}
cie->address_encoding = DW_EH_PE_absptr;
if (augmentation[0] == 'z') {
for (size_t i = 0; i < augmentation_len; i++) {
switch (augmentation[i]) {
case 'z':
if ((err = binary_buffer_skip_leb128(&buffer.bb)))
return err;
break;
case 'L':
if ((err = binary_buffer_skip(&buffer.bb, 1)))
return err;
break;
case 'P': {
uint8_t encoding;
if ((err = binary_buffer_next_u8(&buffer.bb, &encoding)))
return err;
/*
* We don't need the result, so don't bother
* dereferencing.
*/
encoding &= ~DW_EH_PE_indirect;
uint64_t unused;
if ((err = drgn_dwarf_cfi_next_encoded(&buffer,
cie->address_size,
encoding,
0,
&unused)))
return err;
break;
}
case 'R':
if ((err = binary_buffer_next_u8(&buffer.bb,
&cie->address_encoding)))
return err;
break;
}
}
}
cie->initial_instructions = buffer.bb.pos;
cie->initial_instructions_size = buffer.bb.end - buffer.bb.pos;
return NULL;
}
static struct drgn_error *
drgn_parse_dwarf_frames(struct drgn_debug_info_module *module,
enum drgn_debug_info_scn scn,
struct drgn_dwarf_cie_vector *cies,
struct drgn_dwarf_fde_vector *fdes)
{
bool is_eh = scn == DRGN_SCN_EH_FRAME;
struct drgn_error *err;
if (!module->scns[scn])
return NULL;
err = drgn_debug_info_module_cache_section(module, scn);
if (err)
return err;
Elf_Data *data = module->scn_data[scn];
struct drgn_debug_info_buffer buffer;
drgn_debug_info_buffer_init(&buffer, module, scn);
struct drgn_dwarf_cie_map cie_map = HASH_TABLE_INIT;
while (binary_buffer_has_next(&buffer.bb)) {
uint32_t tmp;
if ((err = binary_buffer_next_u32(&buffer.bb, &tmp)))
goto out;
bool is_64_bit = tmp == UINT32_C(0xffffffff);
uint64_t length;
if (is_64_bit) {
if ((err = binary_buffer_next_u64(&buffer.bb, &length)))
goto out;
} else {
length = tmp;
}
/*
* Technically, a length of zero is only a terminator in
* .eh_frame, but other consumers (binutils, elfutils, GDB)
* handle it the same way in .debug_frame.
*/
if (length == 0)
break;
if (length > buffer.bb.end - buffer.bb.pos) {
err = binary_buffer_error(&buffer.bb,
"entry length is out of bounds");
goto out;
}
buffer.bb.end = buffer.bb.pos + length;
/*
* The Linux Standard Base Core Specification [1] states that
* the CIE ID in .eh_frame is always 4 bytes. However, other
* consumers handle it the same as in .debug_frame (8 bytes for
* the 64-bit format).
*
* 1: https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
*/
uint64_t cie_pointer, cie_id;
if (is_64_bit) {
if ((err = binary_buffer_next_u64(&buffer.bb,
&cie_pointer)))
goto out;
cie_id = is_eh ? 0 : UINT64_C(0xffffffffffffffff);
} else {
if ((err = binary_buffer_next_u32_into_u64(&buffer.bb,
&cie_pointer)))
goto out;
cie_id = is_eh ? 0 : UINT64_C(0xffffffff);
}
if (cie_pointer != cie_id) {
if (is_eh) {
size_t pointer_offset =
(buffer.bb.pos
- (is_64_bit ? 8 : 4)
- (char *)data->d_buf);
if (cie_pointer > pointer_offset) {
err = binary_buffer_error(&buffer.bb,
"CIE pointer is out of bounds");
goto out;
}
cie_pointer = pointer_offset - cie_pointer;
} else if (cie_pointer > data->d_size) {
err = binary_buffer_error(&buffer.bb,
"CIE pointer is out of bounds");
goto out;
}
struct drgn_dwarf_fde *fde =
drgn_dwarf_fde_vector_append_entry(fdes);
if (!fde) {
err = &drgn_enomem;
goto out;
}
struct drgn_dwarf_cie_map_entry entry = {
.key = cie_pointer,
.value = cies->size,
};
struct drgn_dwarf_cie_map_iterator it;
int r = drgn_dwarf_cie_map_insert(&cie_map, &entry,
&it);
struct drgn_dwarf_cie *cie;
if (r > 0) {
cie = drgn_dwarf_cie_vector_append_entry(cies);
if (!cie) {
err = &drgn_enomem;
goto out;
}
err = drgn_parse_dwarf_cie(module, scn,
cie_pointer, cie);
if (err)
goto out;
} else if (r == 0) {
cie = &cies->data[it.entry->value];
} else {
err = &drgn_enomem;
goto out;
}
if ((err = drgn_dwarf_cfi_next_encoded(&buffer,
cie->address_size,
cie->address_encoding,
0,
&fde->initial_location)) ||
(err = drgn_dwarf_cfi_next_encoded(&buffer,
cie->address_size,
cie->address_encoding & 0xf,
0,
&fde->address_range)))
goto out;
if (cie->have_augmentation_length) {
uint64_t augmentation_length;
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&augmentation_length)))
goto out;
if (augmentation_length >
buffer.bb.end - buffer.bb.pos) {
err = binary_buffer_error(&buffer.bb,
"augmentation length is out of bounds");
goto out;
}
buffer.bb.pos += augmentation_length;
}
fde->cie = it.entry->value;
fde->instructions = buffer.bb.pos;
fde->instructions_size = buffer.bb.end - buffer.bb.pos;
}
buffer.bb.pos = buffer.bb.end;
buffer.bb.end = (const char *)data->d_buf + data->d_size;
}
err = NULL;
out:
drgn_dwarf_cie_map_deinit(&cie_map);
return err;
}
static void drgn_debug_info_cache_sh_addr(struct drgn_debug_info_module *module,
enum drgn_debug_info_scn scn,
uint64_t *addr)
{
if (module->scns[scn]) {
GElf_Shdr shdr_mem;
GElf_Shdr *shdr = gelf_getshdr(module->scns[scn], &shdr_mem);
if (shdr)
*addr = shdr->sh_addr;
}
}
static int drgn_dwarf_fde_compar(const void *_a, const void *_b, void *arg)
{
const struct drgn_dwarf_fde *a = _a;
const struct drgn_dwarf_fde *b = _b;
const struct drgn_dwarf_cie *cies = arg;
if (a->initial_location < b->initial_location)
return -1;
else if (a->initial_location > b->initial_location)
return 1;
else
return cies[a->cie].is_eh - cies[b->cie].is_eh;
}
static struct drgn_error *
drgn_debug_info_parse_frames(struct drgn_debug_info_module *module)
{
struct drgn_error *err;
drgn_debug_info_cache_sh_addr(module, DRGN_SCN_EH_FRAME,
&module->dwarf.pcrel_base);
drgn_debug_info_cache_sh_addr(module, DRGN_SCN_TEXT,
&module->dwarf.textrel_base);
drgn_debug_info_cache_sh_addr(module, DRGN_SCN_GOT,
&module->dwarf.datarel_base);
struct drgn_dwarf_cie_vector cies = VECTOR_INIT;
struct drgn_dwarf_fde_vector fdes = VECTOR_INIT;
err = drgn_parse_dwarf_frames(module, DRGN_SCN_DEBUG_FRAME, &cies,
&fdes);
if (err)
goto err;
err = drgn_parse_dwarf_frames(module, DRGN_SCN_EH_FRAME, &cies, &fdes);
if (err)
goto err;
drgn_dwarf_cie_vector_shrink_to_fit(&cies);
/*
* Sort FDEs and remove duplicates, preferring .debug_frame over
* .eh_frame.
*/
qsort_r(fdes.data, fdes.size, sizeof(fdes.data[0]),
drgn_dwarf_fde_compar, cies.data);
if (fdes.size > 0) {
size_t src = 1, dst = 1;
for (; src < fdes.size; src++) {
if (fdes.data[src].initial_location !=
fdes.data[dst - 1].initial_location) {
if (src != dst)
fdes.data[dst] = fdes.data[src];
dst++;
}
}
fdes.size = dst;
}
drgn_dwarf_fde_vector_shrink_to_fit(&fdes);
module->dwarf.cies = cies.data;
module->dwarf.fdes = fdes.data;
module->dwarf.num_fdes = fdes.size;
return NULL;
err:
drgn_dwarf_fde_vector_deinit(&fdes);
drgn_dwarf_cie_vector_deinit(&cies);
return err;
}
static struct drgn_error *
drgn_debug_info_find_fde(struct drgn_debug_info_module *module,
uint64_t unbiased_pc, struct drgn_dwarf_fde **ret)
{
struct drgn_error *err;
if (!module->parsed_frames) {
err = drgn_debug_info_parse_frames(module);
if (err)
return err;
module->parsed_frames = true;
}
/* Binary search for the containing FDE. */
size_t lo = 0, hi = module->dwarf.num_fdes;
while (lo < hi) {
size_t mid = lo + (hi - lo) / 2;
struct drgn_dwarf_fde *fde = &module->dwarf.fdes[mid];
if (unbiased_pc < fde->initial_location) {
hi = mid;
} else if (unbiased_pc - fde->initial_location >=
fde->address_range) {
lo = mid + 1;
} else {
*ret = fde;
return NULL;
}
}
*ret = NULL;
return NULL;
}
static struct drgn_error *
drgn_dwarf_cfi_next_offset(struct drgn_debug_info_buffer *buffer, int64_t *ret)
{
struct drgn_error *err;
uint64_t offset;
if ((err = binary_buffer_next_uleb128(&buffer->bb, &offset)))
return err;
if (offset > INT64_MAX)
return binary_buffer_error(&buffer->bb, "offset is too large");
*ret = offset;
return NULL;
}
static struct drgn_error *
drgn_dwarf_cfi_next_offset_sf(struct drgn_debug_info_buffer *buffer,
struct drgn_dwarf_cie *cie, int64_t *ret)
{
struct drgn_error *err;
int64_t factored;
if ((err = binary_buffer_next_sleb128(&buffer->bb, &factored)))
return err;
if (__builtin_mul_overflow(factored, cie->data_alignment_factor, ret))
return binary_buffer_error(&buffer->bb, "offset is too large");
return NULL;
}
static struct drgn_error *
drgn_dwarf_cfi_next_offset_f(struct drgn_debug_info_buffer *buffer,
struct drgn_dwarf_cie *cie, int64_t *ret)
{
struct drgn_error *err;
uint64_t factored;
if ((err = binary_buffer_next_uleb128(&buffer->bb, &factored)))
return err;
if (__builtin_mul_overflow(factored, cie->data_alignment_factor, ret))
return binary_buffer_error(&buffer->bb, "offset is too large");
return NULL;
}
static struct drgn_error *
drgn_dwarf_cfi_next_block(struct drgn_debug_info_buffer *buffer,
const char **buf_ret, size_t *size_ret)
{
struct drgn_error *err;
uint64_t size;
if ((err = binary_buffer_next_uleb128(&buffer->bb, &size)))
return err;
if (size > buffer->bb.end - buffer->bb.pos) {
return binary_buffer_error(&buffer->bb,
"block is out of bounds");
}
*buf_ret = buffer->bb.pos;
buffer->bb.pos += size;
*size_ret = size;
return NULL;
}
DEFINE_VECTOR(drgn_cfi_row_vector, struct drgn_cfi_row *)
static struct drgn_error *
drgn_eval_dwarf_cfi(struct drgn_debug_info_module *module,
struct drgn_dwarf_fde *fde,
const struct drgn_cfi_row *initial_row, uint64_t target,
const char *instructions, size_t instructions_size,
struct drgn_cfi_row **row)
{
struct drgn_error *err;
drgn_register_number (*dwarf_regno_to_internal)(uint64_t) =
module->platform.arch->dwarf_regno_to_internal;
struct drgn_dwarf_cie *cie = &module->dwarf.cies[fde->cie];
uint64_t pc = fde->initial_location;
struct drgn_cfi_row_vector state_stack = VECTOR_INIT;
struct drgn_debug_info_buffer buffer;
drgn_debug_info_buffer_init(&buffer, module,
cie->is_eh ?
DRGN_SCN_EH_FRAME : DRGN_SCN_DEBUG_FRAME);
buffer.bb.pos = instructions;
buffer.bb.end = instructions + instructions_size;
while (binary_buffer_has_next(&buffer.bb)) {
uint8_t opcode;
if ((err = binary_buffer_next_u8(&buffer.bb, &opcode)))
goto out;
uint64_t dwarf_regno;
drgn_register_number regno;
struct drgn_cfi_rule rule;
uint64_t tmp;
switch ((opcode & 0xc0) ? (opcode & 0xc0) : opcode) {
case DW_CFA_set_loc:
if (!initial_row)
goto invalid_for_initial;
if ((err = drgn_dwarf_cfi_next_encoded(&buffer,
cie->address_size,
cie->address_encoding,
fde->initial_location,
&tmp)))
goto out;
if (tmp <= pc) {
err = binary_buffer_error(&buffer.bb,
"DW_CFA_set_loc location is not greater than current location");
goto out;
}
pc = tmp;
if (pc > target)
goto found;
break;
case DW_CFA_advance_loc:
if (!initial_row)
goto invalid_for_initial;
tmp = opcode & 0x3f;
goto advance_loc;
case DW_CFA_advance_loc1:
if (!initial_row)
goto invalid_for_initial;
if ((err = binary_buffer_next_u8_into_u64(&buffer.bb,
&tmp)))
goto out;
goto advance_loc;
case DW_CFA_advance_loc2:
if (!initial_row)
goto invalid_for_initial;
if ((err = binary_buffer_next_u16_into_u64(&buffer.bb,
&tmp)))
goto out;
goto advance_loc;
case DW_CFA_advance_loc4:
if (!initial_row)
goto invalid_for_initial;
if ((err = binary_buffer_next_u32_into_u64(&buffer.bb,
&tmp)))
goto out;
advance_loc:
if (__builtin_mul_overflow(tmp,
cie->code_alignment_factor,
&tmp) ||
__builtin_add_overflow(pc, tmp, &pc) ||
pc > uint_max(cie->address_size)) {
err = drgn_error_create(DRGN_ERROR_OTHER,
"DW_CFA_advance_loc* overflows location");
goto out;
}
if (pc > target)
goto found;
break;
case DW_CFA_def_cfa:
rule.kind = DRGN_CFI_RULE_REGISTER_PLUS_OFFSET;
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&dwarf_regno)) ||
(err = drgn_dwarf_cfi_next_offset(&buffer, &rule.offset)))
goto out;
if ((rule.regno = dwarf_regno_to_internal(dwarf_regno)) ==
DRGN_REGISTER_NUMBER_UNKNOWN)
rule.kind = DRGN_CFI_RULE_UNDEFINED;
goto set_cfa;
case DW_CFA_def_cfa_sf:
rule.kind = DRGN_CFI_RULE_REGISTER_PLUS_OFFSET;
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&dwarf_regno)) ||
(err = drgn_dwarf_cfi_next_offset_sf(&buffer, cie,
&rule.offset)))
goto out;
if ((rule.regno = dwarf_regno_to_internal(dwarf_regno)) ==
DRGN_REGISTER_NUMBER_UNKNOWN)
rule.kind = DRGN_CFI_RULE_UNDEFINED;
goto set_cfa;
case DW_CFA_def_cfa_register:
drgn_cfi_row_get_cfa(*row, &rule);
if (rule.kind != DRGN_CFI_RULE_REGISTER_PLUS_OFFSET) {
err = binary_buffer_error(&buffer.bb,
"DW_CFA_def_cfa_register with incompatible CFA rule");
goto out;
}
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&dwarf_regno)))
goto out;
if ((rule.regno = dwarf_regno_to_internal(dwarf_regno)) ==
DRGN_REGISTER_NUMBER_UNKNOWN)
rule.kind = DRGN_CFI_RULE_UNDEFINED;
goto set_cfa;
case DW_CFA_def_cfa_offset:
drgn_cfi_row_get_cfa(*row, &rule);
if (rule.kind != DRGN_CFI_RULE_REGISTER_PLUS_OFFSET) {
err = binary_buffer_error(&buffer.bb,
"DW_CFA_def_cfa_offset with incompatible CFA rule");
goto out;
}
if ((err = drgn_dwarf_cfi_next_offset(&buffer,
&rule.offset)))
goto out;
goto set_cfa;
case DW_CFA_def_cfa_offset_sf:
drgn_cfi_row_get_cfa(*row, &rule);
if (rule.kind != DRGN_CFI_RULE_REGISTER_PLUS_OFFSET) {
err = binary_buffer_error(&buffer.bb,
"DW_CFA_def_cfa_offset_sf with incompatible CFA rule");
goto out;
}
if ((err = drgn_dwarf_cfi_next_offset_sf(&buffer, cie,
&rule.offset)))
goto out;
goto set_cfa;
case DW_CFA_def_cfa_expression:
rule.kind = DRGN_CFI_RULE_DWARF_EXPRESSION;
rule.push_cfa = false;
if ((err = drgn_dwarf_cfi_next_block(&buffer,
&rule.expr,
&rule.expr_size)))
goto out;
set_cfa:
if (!drgn_cfi_row_set_cfa(row, &rule)) {
err = &drgn_enomem;
goto out;
}
break;
case DW_CFA_undefined:
rule.kind = DRGN_CFI_RULE_UNDEFINED;
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&dwarf_regno)))
goto out;
if ((regno = dwarf_regno_to_internal(dwarf_regno)) ==
DRGN_REGISTER_NUMBER_UNKNOWN)
break;
goto set_reg;
case DW_CFA_same_value:
rule.kind = DRGN_CFI_RULE_REGISTER_PLUS_OFFSET;
rule.offset = 0;
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&dwarf_regno)))
goto out;
if ((regno = dwarf_regno_to_internal(dwarf_regno)) ==
DRGN_REGISTER_NUMBER_UNKNOWN)
break;
rule.regno = regno;
goto set_reg;
case DW_CFA_offset:
rule.kind = DRGN_CFI_RULE_AT_CFA_PLUS_OFFSET;
if ((err = drgn_dwarf_cfi_next_offset_f(&buffer, cie,
&rule.offset)))
goto out;
if ((regno = dwarf_regno_to_internal(opcode & 0x3f)) ==
DRGN_REGISTER_NUMBER_UNKNOWN)
break;
goto set_reg;
case DW_CFA_offset_extended:
rule.kind = DRGN_CFI_RULE_AT_CFA_PLUS_OFFSET;
goto reg_offset_f;
case DW_CFA_offset_extended_sf:
rule.kind = DRGN_CFI_RULE_AT_CFA_PLUS_OFFSET;
goto reg_offset_sf;
case DW_CFA_val_offset:
rule.kind = DRGN_CFI_RULE_CFA_PLUS_OFFSET;
reg_offset_f:
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&dwarf_regno)) ||
(err = drgn_dwarf_cfi_next_offset_f(&buffer, cie,
&rule.offset)))
goto out;
if ((regno = dwarf_regno_to_internal(dwarf_regno)) ==
DRGN_REGISTER_NUMBER_UNKNOWN)
break;
goto set_reg;
case DW_CFA_val_offset_sf:
rule.kind = DRGN_CFI_RULE_CFA_PLUS_OFFSET;
reg_offset_sf:
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&dwarf_regno)) ||
(err = drgn_dwarf_cfi_next_offset_sf(&buffer, cie,
&rule.offset)))
goto out;
if ((regno = dwarf_regno_to_internal(dwarf_regno)) ==
DRGN_REGISTER_NUMBER_UNKNOWN)
break;
goto set_reg;
case DW_CFA_register: {
rule.kind = DRGN_CFI_RULE_REGISTER_PLUS_OFFSET;
rule.offset = 0;
uint64_t dwarf_regno2;
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&dwarf_regno)) ||
(err = binary_buffer_next_uleb128(&buffer.bb,
&dwarf_regno2)))
goto out;
if ((regno = dwarf_regno_to_internal(dwarf_regno)) ==
DRGN_REGISTER_NUMBER_UNKNOWN)
break;
if ((rule.regno = dwarf_regno_to_internal(dwarf_regno2)) ==
DRGN_REGISTER_NUMBER_UNKNOWN)
rule.kind = DRGN_CFI_RULE_UNDEFINED;
goto set_reg;
}
case DW_CFA_expression:
rule.kind = DRGN_CFI_RULE_AT_DWARF_EXPRESSION;
goto reg_expression;
case DW_CFA_val_expression:
rule.kind = DRGN_CFI_RULE_DWARF_EXPRESSION;
reg_expression:
rule.push_cfa = true;
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&dwarf_regno)) ||
(err = drgn_dwarf_cfi_next_block(&buffer,
&rule.expr,
&rule.expr_size)))
goto out;
if ((regno = dwarf_regno_to_internal(dwarf_regno)) ==
DRGN_REGISTER_NUMBER_UNKNOWN)
break;
goto set_reg;
case DW_CFA_restore:
if (!initial_row)
goto invalid_for_initial;
dwarf_regno = opcode & 0x3f;
goto restore;
case DW_CFA_restore_extended:
if (!initial_row) {
invalid_for_initial:
err = binary_buffer_error(&buffer.bb,
"invalid initial DWARF CFI opcode %#" PRIx8,
opcode);
goto out;
}
if ((err = binary_buffer_next_uleb128(&buffer.bb,
&dwarf_regno)))
goto out;
restore:
if ((regno = dwarf_regno_to_internal(dwarf_regno)) ==
DRGN_REGISTER_NUMBER_UNKNOWN)
break;
drgn_cfi_row_get_register(initial_row, regno, &rule);
set_reg:
if (!drgn_cfi_row_set_register(row, regno, &rule)) {
err = &drgn_enomem;
goto out;
}
break;
case DW_CFA_remember_state: {
struct drgn_cfi_row **state =
drgn_cfi_row_vector_append_entry(&state_stack);
if (!state) {
err = &drgn_enomem;
goto out;
}
*state = drgn_empty_cfi_row;
if (!drgn_cfi_row_copy(state, *row)) {
err = &drgn_enomem;
goto out;
}
break;
}
case DW_CFA_restore_state:
if (state_stack.size == 0) {
err = binary_buffer_error(&buffer.bb,
"DW_CFA_restore_state with empty state stack");
goto out;
}
drgn_cfi_row_destroy(*row);
*row = state_stack.data[--state_stack.size];
break;
case DW_CFA_nop:
break;
// Note that this is the same opcode as DW_CFA_GNU_window_save,
// which is used on Sparc.
case DW_CFA_AARCH64_negate_ra_state:
if (drgn_platform_arch(&module->platform)
== DRGN_ARCH_AARCH64) {
regno = DRGN_AARCH64_RA_SIGN_STATE_REGNO;
drgn_cfi_row_get_register(*row, regno, &rule);
if (rule.kind != DRGN_CFI_RULE_CONSTANT) {
err = binary_buffer_error(&buffer.bb,
"DW_CFA_AARCH64_negate_ra_state mixed with another rule");
goto out;
}
rule.constant ^= 1;
goto set_reg;
}
/* fallthrough */
default:
err = binary_buffer_error(&buffer.bb,
"unknown DWARF CFI opcode %#" PRIx8,
opcode);
goto out;
}
}
found:
err = NULL;
out:
for (size_t i = 0; i < state_stack.size; i++)
drgn_cfi_row_destroy(state_stack.data[i]);
drgn_cfi_row_vector_deinit(&state_stack);
return err;
}
static struct drgn_error *
drgn_debug_info_find_cfi_in_fde(struct drgn_debug_info_module *module,
struct drgn_dwarf_fde *fde,
uint64_t unbiased_pc, struct drgn_cfi_row **ret)
{
struct drgn_error *err;
struct drgn_dwarf_cie *cie = &module->dwarf.cies[fde->cie];
struct drgn_cfi_row *initial_row =
(struct drgn_cfi_row *)module->platform.arch->default_dwarf_cfi_row;
err = drgn_eval_dwarf_cfi(module, fde, NULL, unbiased_pc,
cie->initial_instructions,
cie->initial_instructions_size, &initial_row);
if (err)
goto out;
if (!drgn_cfi_row_copy(ret, initial_row)) {
err = &drgn_enomem;
goto out;
}
err = drgn_eval_dwarf_cfi(module, fde, initial_row, unbiased_pc,
fde->instructions, fde->instructions_size,
ret);
out:
drgn_cfi_row_destroy(initial_row);
return err;
}
struct drgn_error *
drgn_debug_info_find_dwarf_cfi(struct drgn_debug_info_module *module,
uint64_t unbiased_pc,
struct drgn_cfi_row **row_ret,
bool *interrupted_ret,
drgn_register_number *ret_addr_regno_ret)
{
struct drgn_error *err;
struct drgn_dwarf_fde *fde;
err = drgn_debug_info_find_fde(module, unbiased_pc, &fde);
if (err)
return err;
if (!fde)
return &drgn_not_found;
err = drgn_debug_info_find_cfi_in_fde(module, fde, unbiased_pc,
row_ret);
if (err)
return err;
*interrupted_ret = module->dwarf.cies[fde->cie].signal_frame;
*ret_addr_regno_ret =
module->dwarf.cies[fde->cie].return_address_register;
return NULL;
}
struct drgn_error *
drgn_eval_cfi_dwarf_expression(struct drgn_program *prog,
const struct drgn_cfi_rule *rule,
const struct drgn_register_state *regs,
void *buf, size_t size)
{
struct drgn_error *err;
struct uint64_vector stack = VECTOR_INIT;
if (rule->push_cfa) {
struct optional_uint64 cfa = drgn_register_state_get_cfa(regs);
if (!cfa.has_value) {
err = &drgn_not_found;
goto out;
}
if (!uint64_vector_append(&stack, &cfa.value)) {
err = &drgn_enomem;
goto out;
}
}
int remaining_ops = MAX_DWARF_EXPR_OPS;
struct drgn_dwarf_expression_context ctx;
drgn_dwarf_expression_context_init(&ctx, prog, regs->module, NULL, NULL,
regs, rule->expr, rule->expr_size);
err = drgn_eval_dwarf_expression(&ctx, &stack, &remaining_ops);
if (err)
goto out;
if (binary_buffer_has_next(&ctx.bb)) {
uint8_t opcode;
err = binary_buffer_next_u8(&ctx.bb, &opcode);
if (!err) {
err = binary_buffer_error(&ctx.bb,
"invalid opcode %#" PRIx8 " for CFI expression",
opcode);
}
goto out;
}
if (stack.size == 0) {
err = &drgn_not_found;
} else if (rule->kind == DRGN_CFI_RULE_AT_DWARF_EXPRESSION) {
err = drgn_program_read_memory(prog, buf,
stack.data[stack.size - 1], size,
false);
} else {
copy_lsbytes(buf, size,
drgn_platform_is_little_endian(&prog->platform),
&stack.data[stack.size - 1], sizeof(uint64_t),
HOST_LITTLE_ENDIAN);
err = NULL;
}
out:
uint64_vector_deinit(&stack);
return err;
}