drgn was originally my side project, but for awhile now it's also been
my work project. Update the copyright headers to reflect this, and add a
copyright header to various files that were missing it.
The configure script allows the user to not use any openmp
implementation but dwarf_index.c uses the locking APIs unconditionally.
This compiles but fails at runtime.
Adding simple stubs for the locking API. This is useful when debugging
crashes in dwarf indexing during development.
Sometimes, I'd like to see all of the missing debug info errors rather
than just the first 5. Allow setting this through the
DRGN_MAX_DEBUG_INFO_ERRORS environment variable.
Currently, the interface between the DWARF index, libdwfl, and the code
which finds and reports vmlinux/kernel modules is spaghetti. The DWARF
index tracks Dwfl_Modules via their userdata. However, despite
conceptually being owned by the DWARF index, the reporting code reports
the Dwfl_Modules and sets up the userdata. These Dwfl_Modules and
drgn_dwfl_module_userdatas are messy to track and pass between the
layers.
This reworks the architecture so that the DWARF index owns the Dwfl
instance and files are reported to the DWARF index; the DWARF index
takes care of reporting to libdwfl internally. In addition to making the
interface for the reporter much cleaner, this improves a few things as a
side-effect:
- We now deduplicate on build ID in addition to path.
- We now skip searching for vmlinux and/or kernel modules if they were
already indexed.
- We now support compressed ELF files via libdwelf.
- We can now load default debug info at the same time as additional
debug info.
libdwfl is the elfutils "DWARF frontend library". It has high-level
functionality for looking up symbols, walking stack traces, etc. In
order to use this functionality, we need to report our debugging
information through libdwfl. For userspace programs, libdwfl has a much
better implementation than drgn for automatically finding debug
information from a core dump or PID. However, for the kernel, libdwfl
has a few issues:
- It only supports finding debug information for the running kernel, not
vmcores.
- It determines the vmlinux address range by reading /proc/kallsyms,
which is slow (~70ms on my machine).
- If separate debug information isn't available for a kernel module, it
finds it by walking /lib/modules/$(uname -r)/kernel; this is repeated
for every module.
- It doesn't find kernel modules with names containing both dashes and
underscores (e.g., aes-x86_64).
Luckily, drgn already solved all of these problems, and with some
effort, we can keep doing it ourselves and report it to libdwfl.
The conversion replaces a bunch of code for dealing with userspace core
dump notes, /proc/$pid/maps, and relocations.
This converts several open-coded dynamic arrays to the new common vector
implementation:
- drgn_lexer stack
- Array dimension array for DWARF parsing
- drgn_program_read_c_string()
- DWARF index directory name hashes
- DWARF index file name hashes
- DWARF index abbreviation table
- DWARF index shard entries
This makes several improvements to the hash table API.
The first two changes make things more general in order to be consistent
with the upcoming binary search tree API:
- Items are renamed to entries.
- Positions are renamed to iterators.
- hash_table_empty() is added.
One change makes the definition API more convenient:
- It is no longer necessary to pass the types into
DEFINE_HASH_{MAP,SET}_FUNCTIONS().
A few changes take some good ideas from the C++ STL:
- hash_table_insert() now fails on duplicates instead of overwriting.
- hash_table_delete_iterator() returns the next iterator.
- hash_table_next() returns an iterator instead of modifying it.
One change reduces memory usage:
- The lower-level DEFINE_HASH_TABLE() is cleaned up and exposed as an
alternative to DEFINE_HASH_MAP() and DEFINE_HASH_SET(). This allows us
to get rid of the duplicated key where a hash map value already embeds
the key (the DWARF index file table) and gets rid of the need to make
a dummy hash set entry to do a search (the pointer and array type
caches).
Currently, programs can be created for three main use-cases: core dumps,
the running kernel, and a running process. However, internally, the
program memory, types, and symbols are pluggable. Expose that as a
callback API, which makes it possible to use drgn in much more creative
ways.
The current mixed Python/C implementation works well, but it has a
couple of important limitations:
- It's too slow for some common use cases, like iterating over large
data structures.
- It can't be reused in utilities written in other languages.
This replaces the internals with a new library written in C, libdrgn. It
includes Python bindings with mostly the same public interface as
before, with some important improvements:
- Types are now represented by a single Type class rather than the messy
polymorphism in the Python implementation.
- Qualifiers are a bitmask instead of a set of strings.
- Bit fields are not considered a separate type.
- The lvalue/rvalue terminology is replaced with reference/value.
- Structure, union, and array values are better supported.
- Function objects are supported.
- Program distinguishes between lookups of variables, constants, and
functions.
The C rewrite is about 6x as fast as the original Python when using the
Python bindings, and about 8x when using the C API directly.
Currently, the exposed API in C is fairly conservative. In the future,
the memory reader, type index, and object index APIs will probably be
exposed for more flexibility.