The Doxygen documentation for libdrgn has bit-rotted over time. Bring
back the Internal module, clean up a few renamed members and parameters,
and fix broken parsing caused by the generic definition macros.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
I recently hit a couple of CI failures caused by relying on transitive
includes that weren't always present. include-what-you-use is a
Clang-based tool that helps with this. It's a bit finicky and noisy, so
this adds scripts/iwyu.py to make running it more convenient (but not
reliable enough to automate it in Travis).
This cleans up all reasonable include-what-you-use warnings and
reorganizes a few header files.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
drgn was originally my side project, but for awhile now it's also been
my work project. Update the copyright headers to reflect this, and add a
copyright header to various files that were missing it.
For live userspace processes, we add a single [0, UINT64_MAX) memory
file segment for /proc/$pid/mem. Of course, not every address in that
range is valid; reading from an invalid address returns EIO. We should
translate this to a DRGN_ERROR_FAULT instead of DRGN_ERROR_OS, but only
for /proc/$pid/mem.
The current array-based memory reader has a bug in the following
scenario:
prog.add_memory_segment(0xffff0000, 128, ...)
# This should replace a subset of the first segment.
prog.add_memory_segment(0xffff0020, 32, ...)
# This moves the first segment back to the front of the array.
prog.read(0xffff0000, 32)
# This finds the first segment instead of the second segment.
prog.read(0xffff0032, 32)
Fix it by using the newly-added splay tree. This also splits up the
virtual and physical memory segments into separate trees.
Currently, programs can be created for three main use-cases: core dumps,
the running kernel, and a running process. However, internally, the
program memory, types, and symbols are pluggable. Expose that as a
callback API, which makes it possible to use drgn in much more creative
ways.
I've been planning to make memory readers pluggable (in order to support
use cases like, e.g., reading a core file over the network), but the
C-style "inheritance" drgn uses internally is awkward as a library
interface; it's much easier to just register a callback. This change
effectively makes drgn_memory_reader a mapping from a memory range to an
arbitrary callback. As a bonus, this means that read callbacks can be
mixed and matched; a part of memory can be in a core file, another part
can be in the executable file, and another part could be filled from an
arbitrary buffer.
The current mixed Python/C implementation works well, but it has a
couple of important limitations:
- It's too slow for some common use cases, like iterating over large
data structures.
- It can't be reused in utilities written in other languages.
This replaces the internals with a new library written in C, libdrgn. It
includes Python bindings with mostly the same public interface as
before, with some important improvements:
- Types are now represented by a single Type class rather than the messy
polymorphism in the Python implementation.
- Qualifiers are a bitmask instead of a set of strings.
- Bit fields are not considered a separate type.
- The lvalue/rvalue terminology is replaced with reference/value.
- Structure, union, and array values are better supported.
- Function objects are supported.
- Program distinguishes between lookups of variables, constants, and
functions.
The C rewrite is about 6x as fast as the original Python when using the
Python bindings, and about 8x when using the C API directly.
Currently, the exposed API in C is fairly conservative. In the future,
the memory reader, type index, and object index APIs will probably be
exposed for more flexibility.