Instead of having two internal variants (drgn_find_symbol_internal() and
drgn_program_find_symbol_in_module()), combine them into the former and
add a separate drgn_error_symbol_not_found() for translating the static
error to the user-facing one. This makes things more flexible for the
next change.
In preparation for making drgn_pretty_print_object() more flexible
(i.e., not always "pretty"), rename it to drgn_format_object(). For
consistency, let's rename drgn_pretty_print_type_name(),
drgn_pretty_print_type(), and drgn_pretty_print_stack_trace(), too.
We currently don't check that the task we're unwinding is actually
blocked, which means that linux_kernel_set_initial_registers_x86_64()
will get garbage from the stack and we'll return a nonsense stack trace.
Let's avoid this by checking that the task isn't running if we didn't
find a NT_PRSTATUS note.
When debugging the Linux kernel, it's inconvenient to have to get the
task_struct of a thread in order to get its stack trace. This adds
support for looking it up solely by PID. In that case, we do the
find_task() inside of libdrgn. This also gives us stack trace support
for userspace core dumps almost for free since we already added support
for NT_PRSTATUS.
vmcores include a NT_PRSTATUS note for each CPU containing the PID of
the task running on that CPU at the time of the crash and its registers.
We can use that to unwind the stack of the crashed tasks.
Currently, the only information available from a stack frame is the
program counter. Eventually, we'd like to add support for getting
arguments and local variables, but that will require more work. In the
mean time, we can at least get the values of other registers. A
determined user can read the assembly for the code they're debugging and
derive the values of variables from the registers.
For now, we only support stack traces for the Linux kernel (at least
v4.9) on x86-64, and we only support getting the program counter and
corresponding function symbol from each stack frame.