The DIE generated by GCC for a zero-length array doesn't have a
DW_AT_upper_bound or DW_AT_count attribute; it looks identical to that
of a flexible array. See
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86985.
The semantics of zero-length and flexible arrays are slightly different
(see https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html), so there are
a few specific cases where replacing a zero-length array with a flexible
array creates an invalid type. We can tell when the type must have been
a zero-length array; in other cases, we will just assume the type is a
flexible array. This ambiguity will hopefully be fixed in a future
version of GCC.
And replace the Python implementation in ProgramObject.string_(). The
CoreReader implementation is still naive in that it reads byte-by-byte,
but this could always be improved in the future.
CompoundType.members() currently returns a list of member names;
sometimes, we actually want the type and offset. So, rename members() to
member_names(), and make members() return the type and offset, using a
newly added version of functools.partial() that caches the return value.
Currently, printing, e.g.,
typedef struct {
int counter;
} atomic_t
results in
typedef struct atomic_t
Which isn't very useful. Instead, print the former.
This is preparation for the next change, so that a Program can clean up
after itself. The Program will close the CoreReader, and the CoreReader
will close the underlying file.
For variables which are predeclared, GCC generates a DW_TAG_variable DIE
with DW_AT_name and DW_AT_declaration as well as a DW_TAG_variable DIE
without DW_AT_name but with DW_AT_specification pointing to the
declaration DIE. We should index the latter, not the former. This has a
couple of benefits: we can skip indexing variable declaration DIEs,
which contribute a lot of duplicate hash table insertions; and, we can
always get the address of a variable from DW_AT_location of the indexed
DIE instead of having to parse the symbol table.
A name and tag are not always enough to uniquely identify a type or
variable. For example, "struct workspace" in the Linux kernel can refer
to one of at least three types; fs/btrfs/{lzo,zlib,zstd}.c each have
their own struct workspace type. We can, however, also differentiate
DIEs on the file they were declared in.
The naive thing to do would be to include the file name as a string in
the hash table entry. However, that means we must allocate and
canonicalize each path in the line number program header and pay an
extra cache miss plus string comparison when adding a new entry.
We can get rid of the cache miss and string comparison if we instead map
the file name to a unique identifier. The foolproof way to do this would
be to create another big hash table of file names and use the hash table
entry index as the unique identifier. However, for this, we'd still need
to allocate and canoicalize each path as well as worry about another big
hash table.
Once we observe that we can get away with "almost certainly unique"
instead of "truly unique" identifiers, the next logical step is to just
use a hash of the file name as the identifier. With a 64-bit hash and
the ~50k files in the kernel, the probability of a collision is 1 in 10
billion. Even in the extremely unlikely event that there is a collision,
it only matters if the files with colliding names also have colliding
DIEs, which brings things pretty close to the realm of impossibility.
After this change, DwarfIndex.find() returns a list of DIEs matching the
name and tag. The callers will be updated to use the list in upcoming
changes.
ProgramObject.__dir__(), member_(), and container_of_() all check that
the relevant type is a struct or union, but they all need to allow
typedefs of structs or unions, as well.
We're currently also doing this check in __getattr__(), which is
unnecessary overhead in the common case. We can just check the exception
in the error case.
The standard library rlcompleter doesn't support expressions involving
an item lookup (e.g., x[0] or x['foo']). This is a pain for the drgn
CLI, because it's common to use prog['variable'] and want to
autocomplete it. Instead of using the standard library rlcompleter,
implement our own, cleaned up version of it with the ability to handle
expressions containing [key]. rlcompleter already allows for arbitrary
__getattr__() calls, and __getitem__() isn't any different.
This is a big change that makes EnumType have a compatible integer type
member instead of copying the fields, which ends up touching a lot of
stuff but also fixing a bunch of static typing errors.
Converting an lvalue to an operand has to do a little bit more than
remove qualifiers:
- Convert array types to pointer types
- Convert function types to pointer types
Some types don't actually have to go through find_dwarf_type(), so they
can be handled in the common code. This allows us to add a MockTypeIndex
to the tests.