We'd like to have more control over how objects are formatted. I
considered defining a custom string format specification syntax, but
that's not easily discoverable. Instead, let's get rid of the current
format specification support and replace it with a normal method.
This implements the first step at supporting C++: class types. In
particular, this adds a new drgn_type_kind, DRGN_TYPE_CLASS, and support
for parsing DW_TAG_class_type from DWARF. Although classes are not valid
in C, this adds support for pretty printing them, for completeness.
It's annoying to do obj.type_.size, and that doesn't even work for every
type. Add sizeof() that does the right thing whether it's given a Type
or Object.
There are a few places (e.g., Program.symbol(), Program.read()) where it
makes sense to accept, e.g., a drgn.Object with integer type. Replace
index_arg() with a converter function and use it everywhere that we use
the "K" format for PyArg_Parse*.
struct drgn_symbol doesn't really represent a symbol; it's just an
object which hasn't been fully initialized (see c2be52dff0 ("libdrgn:
rename object index to symbol index"), it used to be called a "partial
object"). For stack traces, we're going to have a notion of a symbol
that more closely represents an ELF symbol, so let's get rid of the
temporary struct drgn_symbol representation and just return an object
directly.
Currently, programs can be created for three main use-cases: core dumps,
the running kernel, and a running process. However, internally, the
program memory, types, and symbols are pluggable. Expose that as a
callback API, which makes it possible to use drgn in much more creative
ways.
We need to set the value after we've reinitialized the object, otherwise
drgn_object_deinit() may try to free a buffer that we've already
overwritten. This also adds a test which triggers the crash.
There's a bug that we don't allow comparisons between void * and other
pointer types, so let's fix it by allowing all pointer comparisons
regardless of the referenced type. Although this isn't valid by the C
standard, GCC and Clang both allow it by default (with a warning).
The current mixed Python/C implementation works well, but it has a
couple of important limitations:
- It's too slow for some common use cases, like iterating over large
data structures.
- It can't be reused in utilities written in other languages.
This replaces the internals with a new library written in C, libdrgn. It
includes Python bindings with mostly the same public interface as
before, with some important improvements:
- Types are now represented by a single Type class rather than the messy
polymorphism in the Python implementation.
- Qualifiers are a bitmask instead of a set of strings.
- Bit fields are not considered a separate type.
- The lvalue/rvalue terminology is replaced with reference/value.
- Structure, union, and array values are better supported.
- Function objects are supported.
- Program distinguishes between lookups of variables, constants, and
functions.
The C rewrite is about 6x as fast as the original Python when using the
Python bindings, and about 8x when using the C API directly.
Currently, the exposed API in C is fairly conservative. In the future,
the memory reader, type index, and object index APIs will probably be
exposed for more flexibility.