This makes several improvements to the hash table API.
The first two changes make things more general in order to be consistent
with the upcoming binary search tree API:
- Items are renamed to entries.
- Positions are renamed to iterators.
- hash_table_empty() is added.
One change makes the definition API more convenient:
- It is no longer necessary to pass the types into
DEFINE_HASH_{MAP,SET}_FUNCTIONS().
A few changes take some good ideas from the C++ STL:
- hash_table_insert() now fails on duplicates instead of overwriting.
- hash_table_delete_iterator() returns the next iterator.
- hash_table_next() returns an iterator instead of modifying it.
One change reduces memory usage:
- The lower-level DEFINE_HASH_TABLE() is cleaned up and exposed as an
alternative to DEFINE_HASH_MAP() and DEFINE_HASH_SET(). This allows us
to get rid of the duplicated key where a hash map value already embeds
the key (the DWARF index file table) and gets rid of the need to make
a dummy hash set entry to do a search (the pointer and array type
caches).
Currently, size_t and ptrdiff_t default to typedefs of the default
unsigned long and long, respectively, regardless of what the program
actually defines unsigned long or long as. Instead, make them refer the
whatever integer type (long, long long, or int) is the same size as the
word size.
Currently, programs can be created for three main use-cases: core dumps,
the running kernel, and a running process. However, internally, the
program memory, types, and symbols are pluggable. Expose that as a
callback API, which makes it possible to use drgn in much more creative
ways.
Similar to "libdrgn: make memory reader pluggable with callbacks", we
want to support custom type indexes (imagine, e.g., using drgn to parse
a binary format). For now, this disables the dwarf index tests; we'll
have a better way to test them later, so let's not bother adding more
test scaffolding.
The current mixed Python/C implementation works well, but it has a
couple of important limitations:
- It's too slow for some common use cases, like iterating over large
data structures.
- It can't be reused in utilities written in other languages.
This replaces the internals with a new library written in C, libdrgn. It
includes Python bindings with mostly the same public interface as
before, with some important improvements:
- Types are now represented by a single Type class rather than the messy
polymorphism in the Python implementation.
- Qualifiers are a bitmask instead of a set of strings.
- Bit fields are not considered a separate type.
- The lvalue/rvalue terminology is replaced with reference/value.
- Structure, union, and array values are better supported.
- Function objects are supported.
- Program distinguishes between lookups of variables, constants, and
functions.
The C rewrite is about 6x as fast as the original Python when using the
Python bindings, and about 8x when using the C API directly.
Currently, the exposed API in C is fairly conservative. In the future,
the memory reader, type index, and object index APIs will probably be
exposed for more flexibility.