
A Multi-Path Bidirectional Layer 3
Proxy

Jake Hillion

Department of Computer Science
University of Cambridge

This dissertation is submitted for the degree of
Bachelor of Arts

Queens’ College November 2020

Declaration

I, Jake Hillion of Queens’ College, being a candidate for Part II of the Computer Science
Tripos, hereby declare that this dissertation and the work described in it are my own work,
unaided except as may be specified below, and that the dissertation does not contain material
that has already been used to any substantial extent for a comparable purpose. I am content
for my dissertation to be made available to the students and staff of the University.

Jake Hillion
November 2020

Proforma

TODO

Table of contents

List of figures ix

List of tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Existing Work . 1
1.3 Aims . 1

2 Preparation 3
2.1 Threat Model . 3

2.1.1 Public Packets . 3
2.1.2 Portal to Portal Communication 4
2.1.3 Privacy . 5

3 Implementation 7
3.1 Security . 7

4 Evaluation 9
4.1 Evaluation Methodology . 9
4.2 Line Graphs . 10
4.3 Success Criteria . 11

4.3.1 Flow Maintained . 11
4.3.2 Bidirectional Performance Gains 11
4.3.3 IP Spoofing . 11
4.3.4 Security . 11
4.3.5 More Bandwidth over Two Equal Connections 11

4.4 Extended Goals . 12
4.4.1 More Bandwidth over Unequal Connections 12

viii Table of contents

4.4.2 More Bandwidth over Four Equal Connections 12
4.4.3 Bandwidth Variation . 12
4.4.4 Connection Loss . 12
4.4.5 Single Interface Remote Portal . 14
4.4.6 Connection Metric Values . 14

4.5 Stretch Goals . 14
4.5.1 IPv4/IPv6 Support . 14
4.5.2 UDP Proxy Datagrams . 14
4.5.3 IP Proxy Packets . 14

4.6 Performance Evaluation . 15
4.6.1 Faster Connections Scaling . 15
4.6.2 Number of Connections Scaling 15
4.6.3 Real World Testing . 15

5 Conclusions 17

Bibliography 19

Appendix A Graph Generation Script 21

Appendix B Outbound Graphs 23

Project Proposal 25

List of figures

2.1 Bad actors taking a percentage of packets based on their network speed. . . 4
2.2 TCP Throughput Equation (New Reno) 5

4.1 The structure of graphs throughout this section 10
4.2 The network structure of standard tests . 10
4.3 The same test performed both inbound and outbound 11
4.4 The script necessary for the Local Portal to accept packets from a client with

the spoofed IP. 12
4.5 Unequal connections compared against equal of both sides 13
4.6 Scaling of equal connections . 13
4.7 The scripts necessary to allow the Remote Portal to only use a single interface. 14

List of tables

Chapter 1

Introduction

1.1 Motivation

Many regions in the UK do not have access to high bandwidth Internet connections[1].
However, it is often possible to have multiple low bandwidth connections installed. More
generally, a wider variety of Internet connections for fixed locations are becoming available
with time. These include: DSL, Fibre To The Premises, 4G, 5G, Wireless ISPs such as
LARIAT and Low Earth Orbit ISPs such as Starlink.

1.2 Existing Work

1.3 Aims

This project aimed to provide a method of combining a variety of Internet connections, such
as the situations listed above.

When combining Internet connections, there are three main measures that one can
prioritise: throughput, resilience and latency. This project aimed to provide throughput and
resilience at the cost of latency.

Chapter 2

Preparation

2.1 Threat Model

Proxying a network connection via a Remote Portal creates an expanded set of security
threats than connecting directly to the Internet via a modem. In this section, I will discuss my
analysis of these threats, in both isolation, and compared to the case of connecting directly.

The first focus of this analysis is the transparent security. That is, if the Local Portal is
treated as a modem, what security would normally be expected? And for servers commu-
nicating with the Remote Portal, what guarantees can they expect of the packets sent and
received?

The second focus is the direct interaction between the Local Portal and the Remote Portal.
Questions like, does having this system make it easier for someone to perform a Denial of
Service attack on the principal?

These security problems will be considered in the context of the success criteria: provide
security no worse than not using this solution at all. That is, the security should be identical
or stronger than the threats in the first case, and provide no additional vectors of attack in the
second.

2.1.1 Public Packets

A convenient factor of the Internet being an interconnected set of smaller networks is that
there are very few guarantees of security. At layer 3, none of anonymity, integrity, privacy or
freshness are provided once the packet leaves private ranges, so it is up to the application to
ensure its own security on top of this lack of guarantees. For the purposes of this software,
this is very useful: if there are no guarantees to maintain, applications can be expected to act
correctly regardless of how they occur.

4 Preparation

Downlink Capacity Percentage of Packets
25 Mbps 5%
25 Mbps 5%
25 Mbps 5%
(BAD) 425 Mbps 85%

(a) A bad actor with a fast connection taking a
percentage of packets.

Downlink Capacity Percentage of Packets
25 Mbps 25%
25 Mbps 25%
25 Mbps 25%
(BAD) 25 Mbps 25%

(b) A bad actor with an equally slow connection
to you taking a percentage of packets.

Fig. 2.1 Bad actors taking a percentage of packets based on their network speed.

Therefore, to maintain the same level of security for applications, this project can simply
guarantee that the packets which leave the Remote Portal are the same as those that came in.
By doing this, all of the security implemented above Layer 3 will be maintained. This means
that whether a user is accessing insecure websites over HTTP, running a corporate VPN
connection or sending encrypted emails, the security of these applications will be maintained.

2.1.2 Portal to Portal Communication

Cost

Many Internet connections have caps or cost for additional bandwidth. In a standard network,
the control of your cap is physical, in that, if someone wished to increase the load, they
would have to physically connect to the modem.

Due to this, it is important that care is taken with regards to cost. The difference in this
case, is that rather than needing physical access to send data through your connection, all
one needs is an Internet connection. A conceivable threat is for someone to send packets to
your Remote Portal from their own connection, causing the Portal to forward these packets,
and thus using your limited or costly bandwidth.

Denial of Service

If a malicious actor can fool the Remote Portal into sending them a portion of your packets,
they are immediately performing an effective Denial of Service. In figure 2.1a, it can be seen
that a bad actor, with a significantly faster connection than you, can cause huge packet loss if
the Remote Portal would accept them as a valid Local Portal connection.

However, of much more relevance is 2.1b. Given the TCP throughput equation, shown
in figure 2.2, there is an inverse relation between packet loss and throughput of any TCP
connections. Assuming a Round Trip Time of 20ms and Maximum Segment Size of 1460,
packet loss of 25% limits the maximum TCP throughput to approximately 1.17Mbps. In

2.1 Threat Model 5

T hroughput =

√
3
2

1
RT T

√
p

(2.1)

Fig. 2.2 TCP Throughput Equation (New Reno)

fact, due to this relation, a packet loss of even 1% leads to a maximum throughput of
approximately 5.84Mbps. This means that even a small packet loss has a drastic effect on the
performance of the connection as a whole, and thus makes Remote Portals an effective target
for Denial of Service attacks. Thus care should be taken that all Local Portal connections are
from the subject that is intended.

2.1.3 Privacy

Though the packets leaving a modem have no reasonable expectation of privacy, having the
packets enter the Internet at two points does increase this vector. For example, if a malicious
actor convinces the Remote Portal that they are a valid connection from the Local Portal, a
portion of packets will be sent to them. However, as a fortunate side effect, this method to
attempt sniffing would cause a significant Denial of Service to any congestion controlled
links based on packet loss, due to the amount of packet loss caused. Thus, as long as it is
ensured that each packet is not sent to multiple places, privacy should be maintained at a
similar level to simple Internet access.

Chapter 3

Implementation

3.1 Security

For the security implementation, I paid careful attention to the work of Wireguard (Donenfeld,
“WireGuard.” [2]). Wireguard is a modern, well respected method of securely transferring
Layer 3 packets across the Internet.

However, as Wireguard is a VPN, it provides certain security benefits that are not
within the remit of my threat model (section 2.1). The primary example of this is privacy.
When Wireguard, and most VPNs, send a packet, they first encrypt the contents such that
the contents of the datagram are only visible to the intended recipient. For this project,
encryption will not be necessary, as that would provide privacy above using the modem
without this solution. If a user wishes to also have the benefits of an encrypted Internet
connection, the transparency of this solution allows existing VPNs to run underneath and
provide that. This follows the philosophy of do one thing and do it well.

The security in this solution will be achieved by using public and private keypairs to
perform a key exchange at the beginning of connections, and then using that key to produce
a message authentication code for each packet sent across the connection. To prevent replay
of earlier messages, a timestamp will be included within the authenticated section of the
message. This timestamp can be used to discard messages sent a certain time earlier than
now, preventing the usefulness of replay attacks.

As far as is possible, the security of the application relies on external libraries. Although
an interesting exercise, implementing security algorithms directly from papers is far more
likely to result in errors and thus security flaws. Due to this, I will be using trusted and open
source libraries for the scheme I have chosen.

Chapter 4

Evaluation

This chapter will discuss the methods used to evaluate my project and the results gained. The
results will be discussed in the context of the success criteria laid out in the Project Proposal.

This evaluation shows that a network using my method of combining Internet connections
can see vastly superior network performance to one without. It will show the benefits to
throughput, availability, and adaptability.

4.1 Evaluation Methodology

I performed my experiments on a local Proxmox1 server. To encourage frequent and thorough
testing, a harness was built in Python, allowing tests to be added easily and repeated with any
code changes.

Proxmox was chosen due to its RESTful API, for integration with Python. It provides the
required tools to limit connection speeds and disable connections. The server that ran these
tests holds only a single other virtual machine which handles routing. This limits the effect
of external factors on the tests.

The tests are performed on a Dell R710 Server with the following specifications:

CPU(s) 16 x Intel(R) Xeon(R) CPU X5667 @ 3.07GHz (2 Sockets)
Memory 6 x 2GB DDR3 ECC RDIMMS
Kernel Linux 5.4 LTS

1https://proxmox.com

https://proxmox.com

10 Evaluation

(a) No error bars (b) X error bars (c) Y error bars

Fig. 4.1 The structure of graphs throughout this section

Speed Test Server Remote Portal Local Portal Client

0 .. N

Fig. 4.2 The network structure of standard tests

4.2 Line Graphs

The majority of data presented in this section will be in the form of line graphs. These are
generated in a consistent format, using a script found in appendix A.

In figure 4.1, examples are shown of the same graph without any error bars, with error
bars on the X axis, and with error bars on the Y axis. Error bars for the X axis are plotted as
the range of all of the results, while error bars on the Y axis are plotted as 1.5∗σ , where σ

represents the standard deviation of the results.
In figure 4.1b, it is shown that the range of the timestamps provided is incredibly tight.

For this reason, I will not be including error bars in the X axis on the graphs shown from this
point onwards.

In figure 4.1c, it can be seen that the error bars on the Y axis are far more significant.
Thus, error bars will continue to be included in the Y axis.

To generate these results, a fresh set of VMs (Virtual Machines) are created and the
software installed on them. Once this is complete, each test is repeated until the coefficient
of variance (σ/µ , where µ is the arithmetic mean and σ the standard deviation) is below a
desired level, or too many attempts have been completed. The number of attempts taken for
each series will be shown in the legend of each graph.

The network structure of all standard tests is shown in figure 4.2. Any deviations from
this structure will be mentioned. The Local Portal has as many interfaces as referenced in any
test, plus one to connect to the client. All Virtual Machines also have an additional interface
for management, but this has no effect on the tests.

4.3 Success Criteria 11

(a) The inbound graph (b) The outbound graph

Fig. 4.3 The same test performed both inbound and outbound

4.3 Success Criteria

4.3.1 Flow Maintained

TODO.

4.3.2 Bidirectional Performance Gains

The performance gains measured are visible in both directions (inbound and outbound to
the client). The graphs shown in this evaluation section are inbound unless stated otherwise,
with the outbound graphs being available in Appendix B.

Figure 4.3 shows two graphs of the same test - one for the inbound performance and one
for the outbound. It can be seen that both graphs show the same shape.

4.3.3 IP Spoofing

This goal was to ensure the Client could use its network interface as if it really had that
IP. This is achieved through Policy Based Routing. Example scripts are shown in figure 4.4.
Linux also requires the kernel parameter net.ipv4.ip_forward to be set to 1.

4.3.4 Security

Not implemented yet.

4.3.5 More Bandwidth over Two Equal Connections

TODO.

12 Evaluation

1 #IPv4 Forwarding
2 sysctl -w net.ipv4.ip_forward=1
3

4 # Route packets from the remote portal address on the client interface via the
tunnel↪→

5 ip route flush 12
6 ip route add table 12 to 1.1.1.0/24 via 172.19.152.2 dev nc0
7 ip rule add from 1.1.1.3 iif eth3 table 12 priority 12
8

9 # Route packets to the remote portal address out of the client interface
10 ip route flush 13
11 ip route add table 13 to 1.1.1.3 dev eth3
12 ip rule add to 1.1.1.3 table 13 priority 13

Fig. 4.4 The script necessary for the Local Portal to accept packets from a client with the
spoofed IP.

4.4 Extended Goals

4.4.1 More Bandwidth over Unequal Connections

This is demonstrated by showing that 1x1MB+1x2MB connections can exceed the perfor-
mance of 2x1MB connections. The results for this can be seen in figure 4.5, compared against
2x2MB and 1x2MB. It can be seen that the uneven connections fall between the two, which
is as expected.

4.4.2 More Bandwidth over Four Equal Connections

This criteria is about throughput increasing with the number of equal connections added. It is
demonstrated by comparing the throughput of 2x1MB, 3x1MB and 4x1MB connections. This
can be seen in figure 4.6a. A further example is provided of 2x2MB, 3x2MB and 4x2MB in
figure 4.6b.

4.4.3 Bandwidth Variation

TODO.

4.4.4 Connection Loss

TODO.

4.4 Extended Goals 13

Fig. 4.5 Unequal connections compared against equal of both sides

(a) 1MB connections (b) 2MB connections

Fig. 4.6 Scaling of equal connections

14 Evaluation

1 # IPv4 Forwarding
2 sysctl -w net.ipv4.ip_forward=1
3 sysctl -w net.ipv4.conf.eth0.proxy_arp=1
4

5 # Deliberately break local routing
6 ip rule add from all table local priority 20
7 ip rule del 0 || true
8

9 # Route packets to the interface but for nc to this host
10 ip rule add to 1.1.1.3 dport 1234 table local priority 9
11

12 # Route packets to the interface but not for nc via the tunnel
13 ip route flush 10
14 ip route add table 10 to 1.1.1.3 via 172.19.152.3 dev nc0
15 ip rule add to 1.1.1.3 table 10 priority 10

Fig. 4.7 The scripts necessary to allow the Remote Portal to only use a single interface.

4.4.5 Single Interface Remote Portal

The single interface Remote Portal is achieved using a similar set of commands to IP
Spoofing. The majority of the work is again done by policy based routing, with some kernel
parameters needing to be set too. A sample script is shown in figure 4.7.

4.4.6 Connection Metric Values

Not implemented yet.

4.5 Stretch Goals

4.5.1 IPv4/IPv6 Support

The project only supports IPv4.

4.5.2 UDP Proxy Datagrams

The project only supports TCP flows for carrying the proxied data.

4.5.3 IP Proxy Packets

The project only supports TCP flows for carrying the proxied data.

4.6 Performance Evaluation 15

4.6 Performance Evaluation

The discussion of success criteria above used slow network connections to test scaling in
certain situations. This section will focus on testing how the solution scales, in terms of
faster individual connections, and with many more connections. Further, all of the above
tests were automated and carried out entirely on virtual hardware. This section will show
some ’real-world’ data, using a Raspberry Pi 4B and real Internet connections.

4.6.1 Faster Connections Scaling

TODO

4.6.2 Number of Connections Scaling

TODO

4.6.3 Real World Testing

TODO

Chapter 5

Conclusions

Bibliography

[1] (2018). 2018 United Kingdom Speedtest Market Snapshot.

[2] Donenfeld, J. A. (2017). WireGuard: Next Generation Kernel Network Tunnel. In
Proceedings 2017 Network and Distributed System Security Symposium, San Diego, CA.
Internet Society.

Appendix A

Graph Generation Script

1 from itertools import cycle
2 import matplotlib.pyplot as plt
3

4 def plot_iperf_results(
5 series: Dict[str, StandardTest],
6 title: str = None,
7 direction = 'inbound',
8 error_bars_x=False,
9 error_bars_y=False,

10 filename=None,
11 start_at_zero=True,
12):
13 if filename in ['png', 'eps']:
14 filename = 'graphs/{}{}{}{}.{}'.format(
15 'I' if direction == 'inbound' else 'O',
16 'Ex' if error_bars_x else '',
17 'Ey' if error_bars_y else '',
18 ''.join(['S{}-{}'.format(i,x.name()) for (i, x) in

enumerate(series.values())]),↪→

19 filename,
20)
21

22 series = {
23 k: (directionInbound if direction == 'inbound' else

directionOutbound)[v.name()] for (k, v) in series.items()↪→

24 }
25

26 cycol = cycle('brgy')
27

28 fig = plt.figure()

22 Graph Generation Script

29 axes = fig.add_axes([0,0,1,1])
30

31 if title is not None:
32 axes.set_title(title, pad=20.0 if True in [len(x.test.events) > 0 for x in

series.values()] else None)↪→

33

34 axes.set_xlabel('Time (s)')
35 axes.set_ylabel('Throughput (Mbps)')
36

37 for k, v in series.items():
38 data = v.summarise()
39

40 axes.errorbar(
41 data.keys(),
42 [x/1e6 for x in data.values()],
43 xerr=([x[0] for x in v.time_range().values()], [x[1] for x in

v.time_range().values()]) if error_bars_x else None,↪→

44 yerr=[x*1.5/1e6 for x in v.standard_deviation().values()] if
error_bars_y else None,↪→

45 capsize=3,
46 ecolor='grey',
47 color=next(cycol),
48 label=k,
49)
50

51 legend = axes.legend()
52

53 if start_at_zero:
54 axes.set_ylim(bottom=0)
55 axes.set_xlim(left=0)
56

57 if False:
58 for k, v in events.items():
59 axes.axvline(k, linestyle='--', color='grey')
60 axes.annotate(v, (k, 1.02), xycoords=axes.get_xaxis_transform(),

ha='center')↪→

61

62 if filename is not None:
63 fig.savefig(filename, bbox_extra_artists=(legend,), bbox_inches='tight',

pad_inches=0.3)↪→

Appendix B

Outbound Graphs

The graphs shown in the evaluation section are Inbound to the Client (unless otherwise
specified). This appendix contains the same tests but Outbound from the client.

Project Proposal

Computer Science Tripos

Part II Project Proposal Coversheet

Please fill in Part 1 of this form and attach it to the front of your Project Proposal.

Name: CRSID:

College: Overseers: (Initials)

Title of Project:

Date of submission: Will Human Participants be used?

Project Originator:

Signature: --

 Project Supervisor:

 Signature: ---

Directors of

 Signature: -- Studies:

Special Resource

Signature: --- Sponsor:

Special Resource

Signature: --- Sponsor:

 Above signatures to be obtained by the Student
--

Overseer Signature 1: ---

Overseer Signature 2: --

Overseers signatures to be obtained by Student Administration.

Overseers Notes:

--

SA Signature Approved: SA Date Received:

Part 1

Part 2

Part 3

Jake Hillion jsh77

Queens’

A Multi-Path Bidirectional Layer 3 Proxy

No

Jake Hillion

Mike Dodson

Neil Lawrence

AWM & AV

22/10/2020

Introduction and Description of the Work

This project attempts to combine multiple heterogeneous network connections into a single virtual
connection, which has both the combined speed and the maximum resilience of the original con-
nections. This will be achieved by inserting a Local Portal and a Remote Portal into the network
path, as shown in Figure 1. While there are existing solutions that combine multiple connections,
they prioritise one of resilience or speed over the other; this project will attempt to show that this
trade-off can be avoided.

The speed focus of this software is achieved by providing a single virtual connection which ag-
gregates the speed of the individual connections. As this single connection is all that’s made visible
to the client, all applications and protocols can benefit from the speed benefits, as they require no
knowledge of how their packets are being split. As an example, a live video stream that only uses
one flow will be able to use the full capacity of the virtual connection.

The resilience focus provides similar benefits, in that the virtual connection conceals the failing
of any individual network connections from the client and applications. This again means that
applications and protocols not built to handle a network failover can benefit from the resilience
provided by this solution. An example is a SIP call continuing without a redial.

This system is useful in areas where multiple low bandwidth connections are available, but not
a single higher bandwidth connection. This is often the case in rural areas in the UK. It will also
be useful in areas with diverse connections of varying reliability, such as a home with both DSL and
wireless connections, which may become more common with the advent of 5G and LEO systems such
as Starlink. The lack of requirement for vendor support allows for this mixture of connections to be
supported.

Some existing attempts to solve these problems, and the shortfalls of each solution, are summa-
rized below:

• Failover: All existing flows must be restarted when failover occurs. There is no speed benefit
over having a single connection.

• Session Based Load Balancing: All flows on a failed connection must be restarted. Speed
benefit varies between applications, but is excellent in ideal circumstances. This solution is
less effective when parameters of the connections vary with time, as with wireless connections.
Further, advanced policies can be required on an application level to achieve the best speed.

• Application Support: Many modern protocols that are designed with mobile devices in mind
can already handle IP changes (e.g. switching from WiFi to 4G). This allows these applications
to handle situations such as Failover (above), as they treat it like any other network change. The
downside of requiring application support is older protocols, such as SIP, for which resilience
needs to be gained at a higher level.

• MultiPath TCP: MPTCP works best with multiple interfaces on each device that is using it,
e.g. a 4G and WiFi connection on a mobile device. This is due to a device on a NAT with access
to two WAN connections having no direct knowledge of this. It also requires support on both
ends, which isn’t common yet (MPTCP is not yet mainlined in the Linux kernel). Further,
many modern applications are moving away from TCP in favour of lighter UDP protocols,
which wouldn’t benefit from MPTCP support.

• OpenVPN over MultiPath TCP: This allows both non-TCP based protocols, and clients that
don’t support MPTCP to benefit (if it’s implemented network wide). Head of line blocking
becomes more of an issue when passing multiple entirely different applications over a VPN, as
any application can block any other. OpenVPN also adds a lot of unnecessary overhead if a
network wide VPN would not otherwise be used.

2

Client Local Portal

Modem A

Modem B

Remote Portal

Web Server

VoIP Server

Corporate VPN

Figure 1: A network applying this proxy

By providing congestion control over each interface and therefore being able to share packets
without bias between connections, this project should provide a superior solution for load balancing
across heterogeneous and volatile network connections. An example of a client using this is shown in
Figure 1. This solution is highly flexible, allowing the client to be a NAT Router with more devices
behind it, or the flows from the Local Portal to the Remote Portal being tunnelled over a VPN.

Starting Point

I have spent some time looking into the shortfalls and benefits of the available methods for com-
bining multiple Internet connections. The Part IB course Computer Networking has provided the
background information for this project. I have significant experience with Go, though none with
lower level networking. I have no experience with Rust, and my C++ experience is limited to the
Part IB course Programming in C and C++.

While I am not aware of any existing software that accomplishes the task that I propose, Wire-
guard performs a similar task of tunnelling between a local and remote node, has a well regarded
interface, and is a well structured project, providing both inspiration and an initial model for the
structure of my project.

Substance and Structure of the Project

The system will involve load balancing multiple congestion controlled flows between the Local Portal
and the Remote Portal. The Local Portal will receive packets from the client, and use load balancing
and congestion control algorithms to send individual packets along one of the multiple available
connections to the Remote Portal, which will extract the original packets and forward them along a
high bandwidth connection to the wider network.

To achieve this congestion control, I will initially use TCP flows, which include congestion control.
However, TCP also provides other guarantees, which will not benefit this task. For this reason, the
application should be structured in such a way that it can support alternative protocols to TCP. An
improved alternative is using UDP datagrams with a custom congestion control protocol, that only
guarantees congestion control as opposed to packet delivery. Another alternative solution would be
a custom IP packet with modified source and destination addresses and a custom preamble. Having
a variety of techniques available would be very useful, as each of these has less overhead than the
last, while also being less likely to work with more complicated network setups.

When the Local Portal has a packet it wishes to send outbound, it will place the packet and some
additional security data in a queue. The multiple congestion controlled links will each be consuming
from this queue when they are not congested. This will cause greedy load balancing, where each
connection takes all that it can get from the packet queue. As congestion control algorithms adapt

3

Client NAT Router

Modem A

Modem B

Web Server

VoIP Server

Corporate VPN

Figure 2: A network with a NAT Router and two modems

to the present network conditions, this load balancing will alter the balance between links as the
capacity of each link changes.

Security is an important consideration in this project. Creating a multipath connection and
proxies in general can create additional attack vectors, so I will perform a review of some existing
security literature for each of these. However, as the tunnel created here transports entire IP packets,
any security added by the application or transport layer will be maintained by my solution.

Examples are provided showing the path of a packet with standard session based load balancing,
and with this solution applied:

Session Based Load Balancing

A sample network is provided in Figure 2.

1. NAT Router receives the packet from the client.

2. NAT Router uses packet details and Layer 4 knowledge in an attempt to find an established
connection. If there is an established connection, the NAT Router allocates this packet to that
WAN interface. Else, it selects one using a defined load balancing algorithm.

3. NAT Router masquerades the source IP of the packet as that of the selected WAN interface.

4. NAT Router dispatches the packet via the chosen WAN interface.

5. Destination server receives the packet.

This Solution

A sample network is provided in Figure 1.

1. Local Portal receives the packet from the client.

2. Local Portal wraps the packet with additional information.

3. Local Portal sends the wrapped packet along whichever connection has available capacity.

4. Wrapped packet travels across the Internet to the Remote Portal.

5. Remote Portal receives the packet.

6. Remote Portal dispatches the unwrapped packet via its high speed WAN interface.

7. Destination receives the packet.

4

Success Criteria

1. Demonstrate that a flow can be maintained over two connections of equal bandwidth with this
solution if one of the connections becomes unavailable.

2. Any and all performance gains stated below should function bidirectionally (inbound/outbound
to/from the client).

3. Allow the network client behind the main client to treat its IP address on the link to the Local
Portal as the IP of the Remote Portal.

4. Provide security that is no worse than not using this solution at all.

5. Demonstrate that more bandwidth is available over two connections of equal bandwidth with
this solution than is available over one connection without.

Extended Goals

1. Demonstrate that more bandwidth is available over two connections of unequal bandwidth than
is available over two connections of equal bandwidth, where this bandwidth is the minimum of
the unequal connections.

2. Demonstrate that more bandwidth is available over four connections of equal bandwidth than
is available over three connections of equal bandwidth.

3. Demonstrate that if the bandwidth of one of two connections increases/decreases, the band-
width available adapts accordingly.

4. Demonstrate that if one of two connections is lost and then regained, the bandwidth available
reaches the levels of before the connection was lost.

5. My initial design requires the Remote Portal to have two interfaces: one for communicating
with the Local Portal, and one for communicating with the wider network. This criteria is
achieved by supporting both of these actions over one interface.

6. Support a metric value for connections, such that connections with higher metrics are only
used for load balancing if no connection with a lower metric is available.

Stretch Goals

1. Provide full support for both IPv4 and IPv6. This includes reaching the Remote Portal over
IPv6 but proxying IPv4 packets, and vice versa.

2. Provide a UDP based solution of tunnelling the IP packets which exceeds the performance of
the TCP solution in the above bandwidth tests.

3. Provide an IP based solution of forwarding the IP packets which exceeds the performance of
the UDP solution in the above bandwidth tests.

Although these tests will be performed predominantly on virtual hardware, I will endeavour to
replicate some of them in a non-virtual environment, though this will not be a part of the success
criteria.

5

Timetable and Milestones

12/10/2020 - 1/11/2020 (Weeks 1-3)

Study Go, Rust and C++’s abilities to read all packets from an interface and place them into some
form of concurrent queue. Research the positives and negatives of each language’s SPMC and MPSC
queues.

Milestone: Example programs in each language that read all packets from a specific interface and
place them into a queue, or a reason why this isn’t feasible. A decision of which language to use for
the rest of the project, based on these code segments and the status of SPMC queues in the language.

02/11/2020 - 15/11/2020 (Weeks 4-5)

Set up the infrastructure to effectively test any produced work from this point onwards.

Milestone: A virtual router acting as a virtual Internet for these tests. 3 standard VMs below this
level for each: the Local Portal, the Remote Portal and a speed test server to host iPerf3. Behind the
Local Portal should be another virtual machine, acting as the client to test the speed from. Backups
of this setup should also have been made.

16/11/2020 - 29/11/2020 (Weeks 6-7)

This section should focus on the security of the application. This would include the ability for someone
to maliciously use a Remote Portal to perform a DoS attack. Draft the introduction chapter.

Milestone: An analysis of how the security of this solution compares, both with other multipath
solutions and a network without any multipath solution applied. A drafted introduction chapter.

30/11/2020 - 20/12/2020 (Weeks 8-10)

Implementation of the transport aspect of the Local Portal and Remote Portal. The first data
structure for transport should also be created. This does not include the load sharing between
connections - it is for a single connection. To enable testing, this will also require the setup of
configuration options for each side. At this stage, it would be reasonable for the Remote Portal
to require two different IPs - one for server communication, and one as the public IP of the Local
Router. The initial implementation should use TCP, but if time is available, UDP with a custom
datagram should be explored for reduced overhead.

Milestone: A piece of software that can act either as the Local Portal or Remote Portal based on
configuration. Any IP packets sent to the Local Portal should emerge from the Remote Portal.

21/12/2020 - 10/01/2021 (Weeks 11-13)

Create mock connections for tests that support variable speeds, a list of packet numbers to lose and
a number of packets to stop handling packets after. Finalise the introduction chapter. Produce the
first draft of the preparation chapter.

Milestone: Mock connections and tests for the existing single transport. A finalised introduction
chapter. A draft of the preparation chapter.

6

11/01/2021 - 07/02/2021 (Weeks 14-17)

Implement the load balancing between multiple connections for both servers. At this point, connec-
tion losses should be tested too. The progress report is due soon after this work segment, so that
should be completed in here.

Milestone: The Local Portal and Remote Portal are capable of balancing load between multiple
connections. They can also suffer a network failure of all but one connection with minimal packet
loss. The progress report should be prepared.

08/02/2021 - 21/02/2021 (Weeks 18-19)

Finalise the drafted preparation chapter. Draft the implementation chapter. Produce a non-
exhaustive list of graphs and tests that should be included in the evaluation section.

Milestone: Completed preparation chapter. Drafted implementation chapter. A plan of data to
gather to back up the evaluation section.

22/02/2021 - 21/03/2021 (Weeks 20-23)

Finalise the implementation chapter. Gather the data required for graphs. Draft the evaluation
chapter. Draft the conclusions chapter.

Milestone: Finalised implementation chapter. Benchmarks and graphs for non-extended success
criteria complete and added. First complete dissertation draft handed to DoS and supervisor for
feedback.

22/03/2021 - 25/04/2021 (Weeks 24-28)

Flexible time: divide between re-drafting dissertation and adding additional extended success criteria
features, with priority given to re-drafting the dissertation.

Milestone: A finished dissertation and any extended success criteria that have been completed.

26/04/2021 - 09/05/2021 (Weeks 29-30)

New additions freeze. Nothing new should be added to either the dissertation or code at this point.

Milestone: Bug fixes and polishing.

10/05/2021 - 14/05/2021 (Week 31)

The project should already be submitted a week clear of the deadline, so this week has no planned
activity.

Resources Required

• Personal Computer (AMD R9 3950X, 32GB RAM)

• Personal Laptop (AMD i7-8550U, 16GB RAM)

7

Used for development without requiring the lab. Testing this application will require extended
capabilities, which would not be readily available on shared systems.

• Virtualisation Server (2x Intel Xeon X5667, 12GB RAM)

• Backup Virtualisation Server (2x Intel Xeon X5570, 48GB RAM)

A virtualisation server allows controlled testing of the application, without any packets leaving
the physical interfaces of the server.

I accept full responsibility for the above 4 machines and I have made contingency plans to protect
myself against hardware and/or software failure. All resources will be backed up according to the
3-2-1 rule. This would allow me to migrate development and/or testing to the cloud if needed.

Go(Lang) code written will use a version later than that available on the MCS, as the version
currently on the MCS (1.10) does not support Go Modules. Rust is not available on the MCS at the
time of writing. This can be managed by using personal machines or cloud machines accessed via
the MCS.

8

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Existing Work
	1.3 Aims

	2 Preparation
	2.1 Threat Model
	2.1.1 Public Packets
	2.1.2 Portal to Portal Communication
	2.1.3 Privacy

	3 Implementation
	3.1 Security

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 Line Graphs
	4.3 Success Criteria
	4.3.1 Flow Maintained
	4.3.2 Bidirectional Performance Gains
	4.3.3 IP Spoofing
	4.3.4 Security
	4.3.5 More Bandwidth over Two Equal Connections

	4.4 Extended Goals
	4.4.1 More Bandwidth over Unequal Connections
	4.4.2 More Bandwidth over Four Equal Connections
	4.4.3 Bandwidth Variation
	4.4.4 Connection Loss
	4.4.5 Single Interface Remote Portal
	4.4.6 Connection Metric Values

	4.5 Stretch Goals
	4.5.1 IPv4/IPv6 Support
	4.5.2 UDP Proxy Datagrams
	4.5.3 IP Proxy Packets

	4.6 Performance Evaluation
	4.6.1 Faster Connections Scaling
	4.6.2 Number of Connections Scaling
	4.6.3 Real World Testing

	5 Conclusions
	Bibliography
	Appendix A Graph Generation Script
	Appendix B Outbound Graphs
	Project Proposal

