
A Multi-Path Bidirectional Layer 3
Proxy

Jake Hillion

Department of Computer Science
University of Cambridge

This dissertation is submitted for the degree of
Bachelor of Arts

Queens’ College December 2020

Declaration

I, Jake Hillion of Queens’ College, being a candidate for Part II of the Computer Science
Tripos, hereby declare that this dissertation and the work described in it are my own work,
unaided except as may be specified below, and that the dissertation does not contain material
that has already been used to any substantial extent for a comparable purpose. I am content
for my dissertation to be made available to the students and staff of the University.

Jake Hillion
December 2020

Proforma

TODO

Table of contents

List of figures ix

1 Introduction 1
1.1 Motivation . 1
1.2 Existing Work . 1

1.2.1 MultiPath TCP . 1
1.3 Aims . 2

2 Preparation 3
2.1 Threat Model . 3

2.1.1 Transparent Security . 3
2.1.2 Portal to Portal Communication 4
2.1.3 Privacy . 5

3 Implementation 7
3.1 TCP . 7
3.2 UDP . 7

3.2.1 Packet Structure . 9
3.2.2 Congestion Control . 11

3.3 Security . 15
3.3.1 Symmetric Key Cryptography . 15

4 Evaluation 17
4.1 Evaluation Methodology . 17
4.2 Line Graphs . 18
4.3 Success Criteria . 19

4.3.1 Flow Maintained . 19
4.3.2 Bidirectional Performance Gains 19
4.3.3 IP Spoofing . 19

viii Table of contents

4.3.4 Security . 19
4.3.5 More Bandwidth over Two Equal Connections 19

4.4 Extended Goals . 20
4.4.1 More Bandwidth over Unequal Connections 20
4.4.2 More Bandwidth over Four Equal Connections 20
4.4.3 Bandwidth Variation . 20
4.4.4 Connection Loss . 20
4.4.5 Single Interface Remote Portal . 22
4.4.6 Connection Metric Values . 22

4.5 Stretch Goals . 22
4.5.1 IPv4/IPv6 Support . 22
4.5.2 UDP Proxy Datagrams . 22
4.5.3 IP Proxy Packets . 22

4.6 Performance Evaluation . 23
4.6.1 Faster Connections Scaling . 23
4.6.2 Number of Connections Scaling 23
4.6.3 Real World Testing . 23

5 Conclusions 25
5.1 Future Work . 25

Bibliography 27

Appendix A Graph Generation Script 29

Appendix B Outbound Graphs 31

Project Proposal 33

List of figures

2.1 Bad actors taking a percentage of packets based on their network speed. . . 4
2.2 TCP Throughput Equation (New Reno) 5

3.1 TCP packet structure . 8
3.2 UDP packet structure . 10
3.3 ACKs and NACKs responding to sequence numbers 11
3.4 Wireshark dissector . 12
3.5 Congestion controller interface . 13
3.6 UDP New Reno pseudocode . 14
3.7 Message authenticator interface . 15

4.1 The structure of graphs throughout this section 18
4.2 The network structure of standard tests . 18
4.3 The same test performed both inbound and outbound 19
4.4 The script necessary for the Local Portal to accept packets from a client with

the spoofed IP. 20
4.5 Unequal connections compared against equal of both sides 21
4.6 Scaling of equal connections . 21
4.7 The scripts necessary to allow the Remote Portal to only use a single interface. 22

Chapter 1

Introduction

1.1 Motivation

Most UK residential broadband speeds receive broadband speeds advertised at between
30Mbps and 100Mbps download (Ofcom 2020, [2]). However, it is often possible to have
multiple low bandwidth connections installed. More generally, a wider variety of Internet
connections for fixed locations are becoming available with time. These include: DSL, Fibre
To The Premises, 4G, 5G, Wireless ISPs such as LARIAT and Low Earth Orbit ISPs such as
Starlink.

1.2 Existing Work

1.2.1 MultiPath TCP

MultiPath TCP (Wischik et al. 2011, [3]) is an extension to the regular Transmission Control
Protocol, allowing the creation of subflows. MultiPath TCP was designed with two purposes:
increasing resiliency and throughput for multi-homed mobile devices, and providing multi-
homed servers with better control over balancing flows between their interfaces.

The first reason that MPTCP does not satisfy the motivation for this project is temporal.
MPTCP is most effective at creating flows when the device has distinct interfaces or IP
addresses. In the case of an IPv4 home connection, it is often the case that a single IPv4
address is provided to the home. This leads to the use of NAT for IPv4 addresses behind the
router. If an MPTCP capable device lies behind a NAT router which has two external IPv4
addresses, the device itself will have no knowledge of this.

TODO: IPv6 autoconf wrt. multihoming

2 Introduction

Further, it is important to remember legacy devices. Many legacy devices will never
support IPv6, and certainly will never support MPTCP. Though it is possible that these devices
will not require the performance benefits available from multiple Internet connections, it
is likely that they would particularly benefit from a more reliable connection. Being able
to apply speed benefits to an entire network without control over every device on it is a
significant benefit to the solution provided in this dissertation.

The second reason that MPTCP may not provide the change to the Internet that was once
hoped is the UDP based protocols that are coming into existence. Although MPTCP is now
making its way into the Linux kernel, many services are switching to lighter UDP protocols
such as QUIC. The most interesting example of this is HTTP/3, which was previously known
as HTTP over QUIC. This shift to application controlled network connections which do not
contain unnecessary overhead for each specific application seems to be the direction that
the Internet is going in, but suggests that it will be a very long time before even modern
applications can benefit from multipathing.

TODO: Find a study on how many of the connections on the Internet are TCP or UDP,
particularly over time

1.3 Aims

This project aimed to provide a method of combining a variety of Internet connections, such
as the situations listed above.

When combining Internet connections, there are three main measures that one can
prioritise: throughput, resilience and latency. This project aimed to provide throughput and
resilience at the cost of latency.

Chapter 2

Preparation

2.1 Threat Model

Proxying a network connection via a Remote Portal creates an expanded set of security
threats than connecting directly to the Internet via a modem. In this section, I will discuss my
analysis of these threats, in both isolation, and compared to the case of connecting directly.

The first focus of this analysis is the transparent security. That is, if the Local Portal is
treated as a modem, what security would normally be expected? And for servers commu-
nicating with the Remote Portal, what guarantees can they expect of the packets sent and
received?

The second focus is the direct interaction between the Local Portal and the Remote Portal.
Questions like, does having this system make it easier for someone to perform a Denial of
Service attack on the principal?

These security problems will be considered in the context of the success criteria: provide
security no worse than not using this solution at all. That is, the security should be identical
or stronger than the threats in the first case, and provide no additional vectors of attack in the
second.

2.1.1 Transparent Security

A convenient factor of the Internet being an interconnected set of smaller networks is that
there are very few guarantees of security. At layer 3, none of anonymity, integrity, privacy or
freshness are provided once the packet leaves private ranges, so it is up to the application to
ensure its own security on top of this lack of guarantees. For the purposes of this software,
this is very useful: if there are no guarantees to maintain, applications can be expected to act
correctly regardless of how easy it is for these cases to occur.

4 Preparation

Downlink Capacity Percentage of Packets
25 Mbps 5%
25 Mbps 5%
25 Mbps 5%
(BAD) 425 Mbps 85%

(a) A bad actor with a fast connection taking a
percentage of packets.

Downlink Capacity Percentage of Packets
25 Mbps 25%
25 Mbps 25%
25 Mbps 25%
(BAD) 25 Mbps 25%

(b) A bad actor with an equally slow connection
to you taking a percentage of packets.

Fig. 2.1 Bad actors taking a percentage of packets based on their network speed.

Therefore, to maintain the same level of security for applications, this project can simply
guarantee that the packets which leave the Remote Portal are the same as those that came in.
By doing this, all of the security implemented above Layer 3 will be maintained. This means
that whether a user is accessing insecure websites over HTTP, running a corporate VPN
connection or sending encrypted emails, the security of these applications will be unaltered.

2.1.2 Portal to Portal Communication

Cost

Many Internet connections have caps or cost for additional bandwidth. In a standard network,
the control of your cap is physical, in that, if someone wished to increase the load, they
would have to physically connect to the modem.

Due to this, it is important that care is taken with regards to cost. The difference is that
rather than needing physical access to send data through your connection, all one needs is an
Internet connection. A conceivable threat is for someone to send packets to your Remote
Portal from their own connection, causing the Portal to forward these packets, and thus using
your limited or costly bandwidth.

Denial of Service

If a malicious actor can fool the Remote Portal into sending them a portion of your packets,
they are immediately performing an effective Denial of Service on any tunnelled flows
relying on loss based congestion control. In figure 2.1a, it can be seen that a bad actor, with
a significantly faster connection than you, can cause huge packet loss if the Remote Portal
would accept them as a valid Local Portal connection.

However, of much more relevance is 2.1b. Given the TCP throughput equation, shown
in figure 2.2, there is an inverse relation between packet loss and throughput of any TCP
connections. Assuming a Round Trip Time of 20ms and Maximum Segment Size of 1460,

2.1 Threat Model 5

T hroughput =

√
3
2

1
RT T

√
p

(2.1)

Fig. 2.2 TCP Throughput Equation (New Reno)

packet loss of 25% limits the maximum TCP throughput to approximately 1.17Mbps. In
fact, due to this relation, a packet loss of even 1% leads to a maximum throughput of
approximately 5.84Mbps. This means that even a small packet loss can have a drastic effect
on the performance of the connection as a whole, and thus makes Remote Portals an effective
target for Denial of Service attacks. Care must be taken that all Local Portal connections are
from the intended subject.

2.1.3 Privacy

Though the packets leaving a modem have no reasonable expectation of privacy, having the
packets enter the Internet at two points does increase this vector. For example, if a malicious
actor convinces the Remote Portal that they are a valid connection from the Local Portal, a
portion of packets will be sent to them. However, as a fortunate side effect, this method to
attempt sniffing would cause a significant Denial of Service to any congestion controlled
links based on packet loss, due to the amount of packet loss caused. Therefore, as long as it
is ensured that each packet is not sent to multiple places, privacy should be maintained at a
similar level to simple Internet access.

Chapter 3

Implementation

3.1 TCP

The base implementation is built on TCP. TCP provides congestion control and flow control,
which are all that is necessary for this form of greedy load balancing, and therefore solves
almost all of the issues given here. To implement such a solution on TCP, the only difference
that needs to be made is punctuating the connection. As TCP provides a byte stream and
not distinct datagrams, a distinction must be made between the packets. One option is to
use a punctuating character, though this would reduce the character set of the packets, and
therefore require escape sequences in the packets. The second option is to read the length of
the packets and then read the correct amount of data from the stream.

My implementation uses the second option, of punctuating the stream by providing the
length of each packet. Although the IP packets do provide their length internally, I kept the
TCP flow as flexible as possible. That is, it is kept as simple as possible, so that it doesn’t
have to be updated for transmitting any other sort of packets. Therefore, the TCP flow is
punctuated by sending the length of the packet before the packet itself within the stream.
Then, this number of bytes can be read.

3.2 UDP

To increase the performance of the system, I implemented a UDP method of tunnelling
packets, available alongside the TCP method discussed earlier. Using UDP datagrams instead
of a TCP flow is a two front approach to increasing performance. Firstly, it removes the issue
of head of line blocking, as the protocol does not resend packets when they are not received.

8 Implementation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data
offset

Reserved

N
S

C
R
W

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window Size

Checksum Urgent Pointer

TCP
Header

Proxied IP packet
❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

Unix Timestamp

Message Authentication Code

· · ·

 Security
Footer

Fig. 3.1 TCP packet structure

3.2 UDP 9

Secondly, the datagram design can include less per packet overhead in the form of a header,
increasing the efficiency of transmitting packets.

The goal was to create a UDP packet structure that allows for congestion control (and
implicit flow control), without the other benefits that TCP provides. This is as the other
features of TCP are unnecessary for this project, due to being covered by protocols above
Layer 3, which function regardless of the tunnelling.

3.2.1 Packet Structure

The packet structure was decided to allow for effective congestion control and nothing else.
This is achieved with a simple 3 part, 12 byte header (shown in figure 3.2). Similarly to TCP,
each packet contains an acknowledgement number (ACK) and a sequence number (SEQ).
These serve the same purpose as in TCP: providing a method for a congestion controller to
know which packets have been received by their partner. However, they are implemented
slightly differently. TCP sequence numbers are based on bytes, and as such the sequence
number of a packet is the sequence number of the first byte that it contains. As this protocol
is designed for transmitting packets, losing part of a packet does not make sense. They will
also never be split, as this protocol does not support partial transmission, and as such are
atomic. This means that the sequence number can safely represent an individual packet, as
opposed to a byte.

In addition to these two fields, a further Negative Acknowledgement (NACK) field is
required. Due to TCP’s promise of reliable transmission, negative acknowledgements can
never occur. Either the sender must resend the packet in question, or the flow is terminated. In
my protocol, however, it is necessary that the receiver has a method to provide a discontinuous
stream of acknowledgements. If this was attempted without a separate NACK number, it
would be required that each ACK number is sent and received individually. This decreases
the efficiency and correctness of ACKs, both in terms of missing packets, and having to send
at least one packet for every packet received.

The benefit of a NACK is demonstrated in figure 3.3. Figure 3.3a shows a series of ACKs
for a perfect set of sequence numbers. This is rather pointless, as there is no point to ACKing
packets if you never intend to lose any, but is a situation that can occur for large portions of a
flow, given good congestion control and reliable networking. Figure 3.3b shows the same
ACK system for a stream of sequence numbers with one missing. It can be seen that the
sender and receiver reach an impasse: the receiver cannot increase its ACK number, as it has
not received packet 5, and the sender cannot send more packets, as its window is full. The
only move is for the receiver to increase its ACK number and rely on the sender realising
that it took too long to acknowledge the missing packet, though this is unreliable at best.

10 Implementation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source port Destination port

Length Checksum

}
UDP
Header

Acknowledgement number

Negative acknowledgement number

Sequence number

 CC
Header

Proxied IP packet
❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

Unix timestamp

Message authentication code

· · ·

 Security
Footer

Fig. 3.2 UDP packet structure

3.2 UDP 11

Sequence ACK
1 0
2 0
3 2
4 2
5 2
6 5
6 6

(a) ACKs responding to in or-
der sequence numbers

Sequence ACK
1 0
2 0
3 2
5 3
6 3
7 3
7 3

(b) ACKs responding to a miss-
ing sequence number

Sequence ACK NACK
1 0 0
2 0 0
3 2 0
5 2 0
6 2 0
7 6 4
7 7 4

(c) ACKs and NACKs re-
sponding to a missing se-
quence number

Fig. 3.3 ACKs and NACKs responding to sequence numbers

Figure 3.3c shows how this same situation can be responded to with a NACK field. After
the receiver has concluded that the intermediate packet(s) were lost in transit (a function
of RTT, to be discussed further later), it updates the NACK field to the highest lost packet,
allowing the ACK field to be increased from one after the lost packet. This solution resolves
the deadlock of not being able to increase the ACK number without requiring reliable
delivery.

In implementing the UDP based protocol, I spent some time reading packet data in
Wireshark1. After attempting this with simply the RAW byte data, I wrote a dissector for
Wireshark for my protocol. This can be seen in figure 3.4. This is a Lua script that requests
Wireshark use the given dissector function for UDP traffic on port 1234 (a port chosen for
testing). This extracts the three congestion control numbers from the UDP datagram, showing
them in a far easier to read format and allowing more efficient debugging of congestion
control protocols.

3.2.2 Congestion Control

To allow for flexibility in congestion control, I started by building an interface (shown in
figure 3.5) for congestion controllers. The aim of the interface is to provide the controller
with every update that could be used for congestion control, while also providing it every
opportunity to set an ACK or NACK on a packet.

A benefit of the chosen language (Go2 is the powerful management of threads of execution,
or Goroutines. This is demonstrated in the interface, particularly the method Sequence()

uint32. This method expects a congestion controller to block until it can provide the packet

1https://wireshark.org
2https://golang.org

https://wireshark.org
https://golang.org

12 Implementation

1 mpbl3p_udp = Proto("mpbl3p_udp", "Multi Path Proxy Custom UDP")
2

3 ack_F = ProtoField.uint32("mpbl3p_udp.ack", "Acknowledgement")
4 nack_F = ProtoField.uint32("mpbl3p_udp.nack", "Negative Acknowledgement")
5 seq_F = ProtoField.uint32("mpbl3p_udp.seq", "Sequence Number")
6 time_F = ProtoField.absolute_time("mpbl3p_udp.time", "Timestamp")
7 proxied_F = ProtoField.bytes("mpbl3p_udp.data", "Proxied Data")
8

9 mpbl3p_udp.fields = { ack_F, nack_F, seq_F, time_F, proxied_F }
10

11 function mpbl3p_udp.dissector(buffer, pinfo, tree)
12 if buffer:len() < 20 then
13 return
14 end
15

16 pinfo.cols.protocol = "MPBL3P_UDP"
17

18 local ack = buffer(0, 4):le_uint()
19 local nack = buffer(4, 4):le_uint()
20 local seq = buffer(8, 4):le_uint()
21

22 local unix_time = buffer(buffer:len() - 8, 8):le_uint64()
23

24 local subtree = tree:add(mpbl3p_udp, buffer(), "Multi Path Proxy Header, SEQ: "
.. seq .. " ACK: " .. ack .. " NACK: " .. nack)↪→

25

26 subtree:add(ack_F, ack)
27 subtree:add(nack_F, nack)
28 subtree:add(seq_F, seq)
29 subtree:add(time_F, NSTime.new(unix_time:tonumber()))
30 if buffer:len() > 20 then
31 subtree:add(proxied_F, buffer(12, buffer:len() - 12 - 8))
32 end
33 end
34

35 DissectorTable.get("udp.port"):add(1234, mpbl3p_udp)

Fig. 3.4 Wireshark dissector

3.2 UDP 13

1 package udp
2

3 import "time"
4

5 type Congestion interface {
6 Sequence() uint32
7 ReceivedPacket(seq uint32)
8

9 ReceivedAck(uint32)
10 NextAck() uint32
11

12 ReceivedNack(uint32)
13 NextNack() uint32
14

15 AwaitEarlyUpdate(keepalive time.Duration) uint32
16 Reset()
17 }

Fig. 3.5 Congestion controller interface

with a sequence number for dispatch. Given that the design runs each producer and consumer
in a separate Goroutine, this is an effective way to synchronise the packet sending with the
congestion controller, and should be effective for any potential method of congestion control.

New Reno

The first congestion control protocol I implemented is based on TCP New Reno. It is a well
understood and powerful congestion control protocol. The pseudocode for the two most
interesting functions are shown in figure 3.6.

My implementation of New Reno functions differently to the TCP version, given that
it responds with NACKs instead of retransmits. In TCP, updating the ACK is similar - the
ACK sent is the highest ACK available that remains a continuous stream. The interesting
part is visible when the controller decides to send a NACK. Whenever a hole is seen in the
packets waiting to be acknowledged, the delay of the minimum packet waiting to be sent
is checked. If the packet has been waiting for more than a multiple of the round trip time,
chosen presently to be 3∗RT T , the NACK is updated to one below the next packet that can
be sent, indicating that a packet has been missed. The ACK can then be incremented from
the next available.

A point of interest is the acksToSend data structure. It can be seen that three methods are
required: Min(), PopMin() and Insert() (in a section of code not shown in the pseudocode).
A data structure that implements these methods particularly efficiently is the binary heap, pro-

14 Implementation

1 def findAck(start):
2 ack = start
3 while acksToSend.Min() == ack+1:
4 ack = acksToSend.PopMin()
5 return ack
6

7 def updateAckNack(lastAck, lastNack):
8 nack = lastNack
9 ack = findAck(lastAck, acksToSend)

10 if ack == lastAck:
11 if acksToSend.Min().IsDelayedMoreThan(NackTimeout):
12 nack = acksToSend.Min() - 1
13 ack = findAck(acksToSend.PopMin(), acksToSend)
14 return ack, nack
15

16 def ReceivedNack(nack):
17 if !nack.IsFresh():
18 return
19 windowSize /= 2
20

21 def ReceivedAck(ack):
22 if !ack.IsFresh():
23 return
24 if slowStart:
25 windowSize += numberAcked
26 else:
27 windowCount += numberAcked
28 if windowCount >= windowSize:
29 windowSize += 1
30 windowCount -= windowSize

Fig. 3.6 UDP New Reno pseudocode

3.3 Security 15

1 package proxy
2

3 type MacGenerator interface {
4 CodeLength() int
5 Generate([]byte) []byte
6 }
7

8 type MacVerifier interface {
9 CodeLength() int

10 Verify(data []byte, sum []byte) error
11 }

Fig. 3.7 Message authenticator interface

viding Min in O(1) time, with Insert and PopMin in O(logn) time. Therefore, I implemented
a binary heap to store the ACKs to send.

3.3 Security

The security in this solution is achieved by providing a set of interfaces for potential crypto-
graphic systems to implement. This can be seen in figure 3.7. As with all interfaces, the goal
here was to create a flexible but minimal interface.

As far as is possible, the security of the application relies on external libraries. Although
an interesting exercise, implementing security algorithms directly from papers is far more
likely to result in errors and thus security flaws. Due to this, I will be using trusted and open
source libraries for the scheme I have chosen.

3.3.1 Symmetric Key Cryptography

When providing integrity and authentication for a message, there are two main choices: a
Message Authentication Code (MAC) or signing.

TODO: Finish this section.

BLAKE2s

The shared key algorithm I chose to implement is BLAKE2s[1]. It is extremely fast (com-
parable to MD5) while remaining cryptographically secure. Further to this, BLAKE2s is
available in the Go crypto library3, which is a trusted and open source implementation.

3https://github.com/golang/crypto

https://github.com/golang/crypto

Chapter 4

Evaluation

This chapter will discuss the methods used to evaluate my project and the results gained. The
results will be discussed in the context of the success criteria laid out in the Project Proposal.

This evaluation shows that a network using my method of combining Internet connections
can see vastly superior network performance to one without. It will show the benefits to
throughput, availability, and adaptability.

4.1 Evaluation Methodology

I performed my experiments on a local Proxmox1 server. To encourage frequent and thorough
testing, a harness was built in Python, allowing tests to be added easily and repeated with any
code changes.

Proxmox was chosen due to its RESTful API, for integration with Python. It provides the
required tools to limit connection speeds and disable connections. The server that ran these
tests holds only a single other virtual machine which handles routing. This limits the effect
of external factors on the tests.

The tests are performed on a Dell R710 Server with the following specifications:

CPU(s) 16 x Intel(R) Xeon(R) CPU X5667 @ 3.07GHz (2 Sockets)
Memory 6 x 2GB DDR3 ECC RDIMMS
Kernel Linux 5.4 LTS

1https://proxmox.com

https://proxmox.com

18 Evaluation

(a) No error bars (b) X error bars (c) Y error bars

Fig. 4.1 The structure of graphs throughout this section

Speed Test Server Remote Portal Local Portal Client

0 .. N

Fig. 4.2 The network structure of standard tests

4.2 Line Graphs

The majority of data presented in this section will be in the form of line graphs. These are
generated in a consistent format, using a script found in appendix A.

In figure 4.1, examples are shown of the same graph without any error bars, with error
bars on the X axis, and with error bars on the Y axis. Error bars for the X axis are plotted as
the range of all of the results, while error bars on the Y axis are plotted as 1.5∗σ , where σ

represents the standard deviation of the results.
In figure 4.1b, it is shown that the range of the timestamps provided is incredibly tight.

For this reason, I will not be including error bars in the X axis on the graphs shown from this
point onwards.

In figure 4.1c, it can be seen that the error bars on the Y axis are far more significant.
Thus, error bars will continue to be included in the Y axis.

To generate these results, a fresh set of VMs (Virtual Machines) are created and the
software installed on them. Once this is complete, each test is repeated until the coefficient
of variance (σ/µ , where µ is the arithmetic mean and σ the standard deviation) is below a
desired level, or too many attempts have been completed. The number of attempts taken for
each series will be shown in the legend of each graph.

The network structure of all standard tests is shown in figure 4.2. Any deviations from
this structure will be mentioned. The Local Portal has as many interfaces as referenced in any
test, plus one to connect to the client. All Virtual Machines also have an additional interface
for management, but this has no effect on the tests.

4.3 Success Criteria 19

(a) The inbound graph (b) The outbound graph

Fig. 4.3 The same test performed both inbound and outbound

4.3 Success Criteria

4.3.1 Flow Maintained

TODO.

4.3.2 Bidirectional Performance Gains

The performance gains measured are visible in both directions (inbound and outbound to
the client). The graphs shown in this evaluation section are inbound unless stated otherwise,
with the outbound graphs being available in Appendix B.

Figure 4.3 shows two graphs of the same test - one for the inbound performance and one
for the outbound. It can be seen that both graphs show the same shape.

4.3.3 IP Spoofing

This goal was to ensure the Client could use its network interface as if it really had that
IP. This is achieved through Policy Based Routing. Example scripts are shown in figure 4.4.
Linux also requires the kernel parameter net.ipv4.ip_forward to be set to 1.

4.3.4 Security

TODO.

4.3.5 More Bandwidth over Two Equal Connections

TODO.

20 Evaluation

1 #IPv4 Forwarding
2 sysctl -w net.ipv4.ip_forward=1
3

4 # Route packets from the remote portal address on the client interface via the
tunnel↪→

5 ip route flush 12
6 ip route add table 12 to 1.1.1.0/24 via 172.19.152.2 dev nc0
7 ip rule add from 1.1.1.3 iif eth3 table 12 priority 12
8

9 # Route packets to the remote portal address out of the client interface
10 ip route flush 13
11 ip route add table 13 to 1.1.1.3 dev eth3
12 ip rule add to 1.1.1.3 table 13 priority 13

Fig. 4.4 The script necessary for the Local Portal to accept packets from a client with the
spoofed IP.

4.4 Extended Goals

4.4.1 More Bandwidth over Unequal Connections

This is demonstrated by showing that 1x1MB+1x2MB connections can exceed the perfor-
mance of 2x1MB connections. The results for this can be seen in figure 4.5, compared against
2x2MB and 1x2MB. It can be seen that the uneven connections fall between the two, which
is as expected.

4.4.2 More Bandwidth over Four Equal Connections

This criteria is about throughput increasing with the number of equal connections added. It is
demonstrated by comparing the throughput of 2x1MB, 3x1MB and 4x1MB connections. This
can be seen in figure 4.6a. A further example is provided of 2x2MB, 3x2MB and 4x2MB in
figure 4.6b.

4.4.3 Bandwidth Variation

TODO.

4.4.4 Connection Loss

TODO.

4.4 Extended Goals 21

Fig. 4.5 Unequal connections compared against equal of both sides

(a) 1MB connections (b) 2MB connections

Fig. 4.6 Scaling of equal connections

22 Evaluation

1 # IPv4 Forwarding
2 sysctl -w net.ipv4.ip_forward=1
3 sysctl -w net.ipv4.conf.eth0.proxy_arp=1
4

5 # Deliberately break local routing
6 ip rule add from all table local priority 20
7 ip rule del 0 || true
8

9 # Route packets to the interface but for nc to this host
10 ip rule add to 1.1.1.3 dport 1234 table local priority 9
11

12 # Route packets to the interface but not for nc via the tunnel
13 ip route flush 10
14 ip route add table 10 to 1.1.1.3 via 172.19.152.3 dev nc0
15 ip rule add to 1.1.1.3 table 10 priority 10

Fig. 4.7 The scripts necessary to allow the Remote Portal to only use a single interface.

4.4.5 Single Interface Remote Portal

The single interface Remote Portal is achieved using a similar set of commands to IP
Spoofing. The majority of the work is again done by policy based routing, with some kernel
parameters needing to be set too. A sample script is shown in figure 4.7.

4.4.6 Connection Metric Values

Not implemented yet.

4.5 Stretch Goals

4.5.1 IPv4/IPv6 Support

The project is only tested with IPv4.

4.5.2 UDP Proxy Datagrams

TODO

4.5.3 IP Proxy Packets

The project only supports TCP flows for carrying the proxied data.

4.6 Performance Evaluation 23

4.6 Performance Evaluation

The discussion of success criteria above used slow network connections to test scaling in
certain situations. This section will focus on testing how the solution scales, in terms of
faster individual connections, and with many more connections. Further, all of the above
tests were automated and carried out entirely on virtual hardware. This section will show
some ’real-world’ data, using a Raspberry Pi 4B and real Internet connections.

4.6.1 Faster Connections Scaling

TODO

4.6.2 Number of Connections Scaling

TODO

4.6.3 Real World Testing

TODO

Chapter 5

Conclusions

5.1 Future Work

The most interesting future work on multi-homed devices would focus on adding additional
features to gateways.

Work on the most effective method of allowing a gateway to inform a device behind it
that it is worth adding additional MPTCP subflows.

Work on gateways understanding the Layer 4 concepts of MPTCP and adapting their
load balancing algorithms to ensure that multiple subflows of the same MPTCP flow are split
appropriately between the available links.

Work on gateways that understand MPTCP to take a non-MPTCP flow and transparently
convert it into a MPTCP flow at the gateway, and back again as it reaches the device behind.

Work on IPv6 multi-homing to more effectively inform devices behind it of when they
have multiple homes.

TODO: Check, for all of these, whether they should actually be in past work. Particularly
the IPv6 multi-homing one.

Bibliography

[1] Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., and Winnerlein, C. (2013). BLAKE2:
Simpler, Smaller, Fast as MD5. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M.,
Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan,
M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Jacobson, M., Locasto, M.,
Mohassel, P., and Safavi-Naini, R., editors, Applied Cryptography and Network Security,
volume 7954, pages 119–135. Springer Berlin Heidelberg, Berlin, Heidelberg. Series
Title: Lecture Notes in Computer Science.

[2] Ofcom (2020). The performance of fixed-line broadband delivered to UK residential
customers.

[3] Wischik, D., Raiciu, C., Greenhalgh, A., and Handley, M. (2011). Design, implementa-
tion and evaluation of congestion control for multipath TCP. page 14.

Appendix A

Graph Generation Script

1 from itertools import cycle
2 import matplotlib.pyplot as plt
3

4 def plot_iperf_results(
5 series: Dict[str, StandardTest],
6 title: str = None,
7 direction = 'inbound',
8 error_bars_x=False,
9 error_bars_y=False,

10 filename=None,
11 start_at_zero=True,
12):
13 if filename in ['png', 'eps']:
14 filename = 'graphs/{}{}{}{}.{}'.format(
15 'I' if direction == 'inbound' else 'O',
16 'Ex' if error_bars_x else '',
17 'Ey' if error_bars_y else '',
18 ''.join(['S{}-{}'.format(i,x.name()) for (i, x) in

enumerate(series.values())]),↪→

19 filename,
20)
21

22 series = {
23 k: (directionInbound if direction == 'inbound' else

directionOutbound)[v.name()] for (k, v) in series.items()↪→

24 }
25

26 cycol = cycle('brgy')
27

28 fig = plt.figure()

30 Graph Generation Script

29 axes = fig.add_axes([0,0,1,1])
30

31 if title is not None:
32 axes.set_title(title, pad=20.0 if True in [len(x.test.events) > 0 for x in

series.values()] else None)↪→

33

34 axes.set_xlabel('Time (s)')
35 axes.set_ylabel('Throughput (Mbps)')
36

37 for k, v in series.items():
38 data = v.summarise()
39

40 axes.errorbar(
41 data.keys(),
42 [x/1e6 for x in data.values()],
43 xerr=([x[0] for x in v.time_range().values()], [x[1] for x in

v.time_range().values()]) if error_bars_x else None,↪→

44 yerr=[x*1.5/1e6 for x in v.standard_deviation().values()] if
error_bars_y else None,↪→

45 capsize=3,
46 ecolor='grey',
47 color=next(cycol),
48 label=k,
49)
50

51 legend = axes.legend()
52

53 if start_at_zero:
54 axes.set_ylim(bottom=0)
55 axes.set_xlim(left=0)
56

57 if False:
58 for k, v in events.items():
59 axes.axvline(k, linestyle='--', color='grey')
60 axes.annotate(v, (k, 1.02), xycoords=axes.get_xaxis_transform(),

ha='center')↪→

61

62 if filename is not None:
63 fig.savefig(filename, bbox_extra_artists=(legend,), bbox_inches='tight',

pad_inches=0.3)↪→

Appendix B

Outbound Graphs

The graphs shown in the evaluation section are Inbound to the Client (unless otherwise
specified). This appendix contains the same tests but Outbound from the client.

Project Proposal

Computer Science Tripos

Part II Project Proposal Coversheet

Please fill in Part 1 of this form and attach it to the front of your Project Proposal.

Name: CRSID:

College: Overseers: (Initials)

Title of Project:

Date of submission: Will Human Participants be used?

Project Originator:

Signature: --

 Project Supervisor:

 Signature: ---

Directors of

 Signature: -- Studies:

Special Resource

Signature: --- Sponsor:

Special Resource

Signature: --- Sponsor:

 Above signatures to be obtained by the Student
--

Overseer Signature 1: ---

Overseer Signature 2: --

Overseers signatures to be obtained by Student Administration.

Overseers Notes:

--

SA Signature Approved: SA Date Received:

Part 1

Part 2

Part 3

Jake Hillion jsh77

Queens’

A Multi-Path Bidirectional Layer 3 Proxy

No

Jake Hillion

Mike Dodson

Neil Lawrence

AWM & AV

22/10/2020

Introduction and Description of the Work

This project attempts to combine multiple heterogeneous network connections into a single virtual
connection, which has both the combined speed and the maximum resilience of the original con-
nections. This will be achieved by inserting a Local Portal and a Remote Portal into the network
path, as shown in Figure 1. While there are existing solutions that combine multiple connections,
they prioritise one of resilience or speed over the other; this project will attempt to show that this
trade-off can be avoided.

The speed focus of this software is achieved by providing a single virtual connection which ag-
gregates the speed of the individual connections. As this single connection is all that’s made visible
to the client, all applications and protocols can benefit from the speed benefits, as they require no
knowledge of how their packets are being split. As an example, a live video stream that only uses
one flow will be able to use the full capacity of the virtual connection.

The resilience focus provides similar benefits, in that the virtual connection conceals the failing
of any individual network connections from the client and applications. This again means that
applications and protocols not built to handle a network failover can benefit from the resilience
provided by this solution. An example is a SIP call continuing without a redial.

This system is useful in areas where multiple low bandwidth connections are available, but not
a single higher bandwidth connection. This is often the case in rural areas in the UK. It will also
be useful in areas with diverse connections of varying reliability, such as a home with both DSL and
wireless connections, which may become more common with the advent of 5G and LEO systems such
as Starlink. The lack of requirement for vendor support allows for this mixture of connections to be
supported.

Some existing attempts to solve these problems, and the shortfalls of each solution, are summa-
rized below:

• Failover: All existing flows must be restarted when failover occurs. There is no speed benefit
over having a single connection.

• Session Based Load Balancing: All flows on a failed connection must be restarted. Speed
benefit varies between applications, but is excellent in ideal circumstances. This solution is
less effective when parameters of the connections vary with time, as with wireless connections.
Further, advanced policies can be required on an application level to achieve the best speed.

• Application Support: Many modern protocols that are designed with mobile devices in mind
can already handle IP changes (e.g. switching from WiFi to 4G). This allows these applications
to handle situations such as Failover (above), as they treat it like any other network change. The
downside of requiring application support is older protocols, such as SIP, for which resilience
needs to be gained at a higher level.

• MultiPath TCP: MPTCP works best with multiple interfaces on each device that is using it,
e.g. a 4G and WiFi connection on a mobile device. This is due to a device on a NAT with access
to two WAN connections having no direct knowledge of this. It also requires support on both
ends, which isn’t common yet (MPTCP is not yet mainlined in the Linux kernel). Further,
many modern applications are moving away from TCP in favour of lighter UDP protocols,
which wouldn’t benefit from MPTCP support.

• OpenVPN over MultiPath TCP: This allows both non-TCP based protocols, and clients that
don’t support MPTCP to benefit (if it’s implemented network wide). Head of line blocking
becomes more of an issue when passing multiple entirely different applications over a VPN, as
any application can block any other. OpenVPN also adds a lot of unnecessary overhead if a
network wide VPN would not otherwise be used.

2

Client Local Portal

Modem A

Modem B

Remote Portal

Web Server

VoIP Server

Corporate VPN

Figure 1: A network applying this proxy

By providing congestion control over each interface and therefore being able to share packets
without bias between connections, this project should provide a superior solution for load balancing
across heterogeneous and volatile network connections. An example of a client using this is shown in
Figure 1. This solution is highly flexible, allowing the client to be a NAT Router with more devices
behind it, or the flows from the Local Portal to the Remote Portal being tunnelled over a VPN.

Starting Point

I have spent some time looking into the shortfalls and benefits of the available methods for com-
bining multiple Internet connections. The Part IB course Computer Networking has provided the
background information for this project. I have significant experience with Go, though none with
lower level networking. I have no experience with Rust, and my C++ experience is limited to the
Part IB course Programming in C and C++.

While I am not aware of any existing software that accomplishes the task that I propose, Wire-
guard performs a similar task of tunnelling between a local and remote node, has a well regarded
interface, and is a well structured project, providing both inspiration and an initial model for the
structure of my project.

Substance and Structure of the Project

The system will involve load balancing multiple congestion controlled flows between the Local Portal
and the Remote Portal. The Local Portal will receive packets from the client, and use load balancing
and congestion control algorithms to send individual packets along one of the multiple available
connections to the Remote Portal, which will extract the original packets and forward them along a
high bandwidth connection to the wider network.

To achieve this congestion control, I will initially use TCP flows, which include congestion control.
However, TCP also provides other guarantees, which will not benefit this task. For this reason, the
application should be structured in such a way that it can support alternative protocols to TCP. An
improved alternative is using UDP datagrams with a custom congestion control protocol, that only
guarantees congestion control as opposed to packet delivery. Another alternative solution would be
a custom IP packet with modified source and destination addresses and a custom preamble. Having
a variety of techniques available would be very useful, as each of these has less overhead than the
last, while also being less likely to work with more complicated network setups.

When the Local Portal has a packet it wishes to send outbound, it will place the packet and some
additional security data in a queue. The multiple congestion controlled links will each be consuming
from this queue when they are not congested. This will cause greedy load balancing, where each
connection takes all that it can get from the packet queue. As congestion control algorithms adapt

3

Client NAT Router

Modem A

Modem B

Web Server

VoIP Server

Corporate VPN

Figure 2: A network with a NAT Router and two modems

to the present network conditions, this load balancing will alter the balance between links as the
capacity of each link changes.

Security is an important consideration in this project. Creating a multipath connection and
proxies in general can create additional attack vectors, so I will perform a review of some existing
security literature for each of these. However, as the tunnel created here transports entire IP packets,
any security added by the application or transport layer will be maintained by my solution.

Examples are provided showing the path of a packet with standard session based load balancing,
and with this solution applied:

Session Based Load Balancing

A sample network is provided in Figure 2.

1. NAT Router receives the packet from the client.

2. NAT Router uses packet details and Layer 4 knowledge in an attempt to find an established
connection. If there is an established connection, the NAT Router allocates this packet to that
WAN interface. Else, it selects one using a defined load balancing algorithm.

3. NAT Router masquerades the source IP of the packet as that of the selected WAN interface.

4. NAT Router dispatches the packet via the chosen WAN interface.

5. Destination server receives the packet.

This Solution

A sample network is provided in Figure 1.

1. Local Portal receives the packet from the client.

2. Local Portal wraps the packet with additional information.

3. Local Portal sends the wrapped packet along whichever connection has available capacity.

4. Wrapped packet travels across the Internet to the Remote Portal.

5. Remote Portal receives the packet.

6. Remote Portal dispatches the unwrapped packet via its high speed WAN interface.

7. Destination receives the packet.

4

Success Criteria

1. Demonstrate that a flow can be maintained over two connections of equal bandwidth with this
solution if one of the connections becomes unavailable.

2. Any and all performance gains stated below should function bidirectionally (inbound/outbound
to/from the client).

3. Allow the network client behind the main client to treat its IP address on the link to the Local
Portal as the IP of the Remote Portal.

4. Provide security that is no worse than not using this solution at all.

5. Demonstrate that more bandwidth is available over two connections of equal bandwidth with
this solution than is available over one connection without.

Extended Goals

1. Demonstrate that more bandwidth is available over two connections of unequal bandwidth than
is available over two connections of equal bandwidth, where this bandwidth is the minimum of
the unequal connections.

2. Demonstrate that more bandwidth is available over four connections of equal bandwidth than
is available over three connections of equal bandwidth.

3. Demonstrate that if the bandwidth of one of two connections increases/decreases, the band-
width available adapts accordingly.

4. Demonstrate that if one of two connections is lost and then regained, the bandwidth available
reaches the levels of before the connection was lost.

5. My initial design requires the Remote Portal to have two interfaces: one for communicating
with the Local Portal, and one for communicating with the wider network. This criteria is
achieved by supporting both of these actions over one interface.

6. Support a metric value for connections, such that connections with higher metrics are only
used for load balancing if no connection with a lower metric is available.

Stretch Goals

1. Provide full support for both IPv4 and IPv6. This includes reaching the Remote Portal over
IPv6 but proxying IPv4 packets, and vice versa.

2. Provide a UDP based solution of tunnelling the IP packets which exceeds the performance of
the TCP solution in the above bandwidth tests.

3. Provide an IP based solution of forwarding the IP packets which exceeds the performance of
the UDP solution in the above bandwidth tests.

Although these tests will be performed predominantly on virtual hardware, I will endeavour to
replicate some of them in a non-virtual environment, though this will not be a part of the success
criteria.

5

Timetable and Milestones

12/10/2020 - 1/11/2020 (Weeks 1-3)

Study Go, Rust and C++’s abilities to read all packets from an interface and place them into some
form of concurrent queue. Research the positives and negatives of each language’s SPMC and MPSC
queues.

Milestone: Example programs in each language that read all packets from a specific interface and
place them into a queue, or a reason why this isn’t feasible. A decision of which language to use for
the rest of the project, based on these code segments and the status of SPMC queues in the language.

02/11/2020 - 15/11/2020 (Weeks 4-5)

Set up the infrastructure to effectively test any produced work from this point onwards.

Milestone: A virtual router acting as a virtual Internet for these tests. 3 standard VMs below this
level for each: the Local Portal, the Remote Portal and a speed test server to host iPerf3. Behind the
Local Portal should be another virtual machine, acting as the client to test the speed from. Backups
of this setup should also have been made.

16/11/2020 - 29/11/2020 (Weeks 6-7)

This section should focus on the security of the application. This would include the ability for someone
to maliciously use a Remote Portal to perform a DoS attack. Draft the introduction chapter.

Milestone: An analysis of how the security of this solution compares, both with other multipath
solutions and a network without any multipath solution applied. A drafted introduction chapter.

30/11/2020 - 20/12/2020 (Weeks 8-10)

Implementation of the transport aspect of the Local Portal and Remote Portal. The first data
structure for transport should also be created. This does not include the load sharing between
connections - it is for a single connection. To enable testing, this will also require the setup of
configuration options for each side. At this stage, it would be reasonable for the Remote Portal
to require two different IPs - one for server communication, and one as the public IP of the Local
Router. The initial implementation should use TCP, but if time is available, UDP with a custom
datagram should be explored for reduced overhead.

Milestone: A piece of software that can act either as the Local Portal or Remote Portal based on
configuration. Any IP packets sent to the Local Portal should emerge from the Remote Portal.

21/12/2020 - 10/01/2021 (Weeks 11-13)

Create mock connections for tests that support variable speeds, a list of packet numbers to lose and
a number of packets to stop handling packets after. Finalise the introduction chapter. Produce the
first draft of the preparation chapter.

Milestone: Mock connections and tests for the existing single transport. A finalised introduction
chapter. A draft of the preparation chapter.

6

11/01/2021 - 07/02/2021 (Weeks 14-17)

Implement the load balancing between multiple connections for both servers. At this point, connec-
tion losses should be tested too. The progress report is due soon after this work segment, so that
should be completed in here.

Milestone: The Local Portal and Remote Portal are capable of balancing load between multiple
connections. They can also suffer a network failure of all but one connection with minimal packet
loss. The progress report should be prepared.

08/02/2021 - 21/02/2021 (Weeks 18-19)

Finalise the drafted preparation chapter. Draft the implementation chapter. Produce a non-
exhaustive list of graphs and tests that should be included in the evaluation section.

Milestone: Completed preparation chapter. Drafted implementation chapter. A plan of data to
gather to back up the evaluation section.

22/02/2021 - 21/03/2021 (Weeks 20-23)

Finalise the implementation chapter. Gather the data required for graphs. Draft the evaluation
chapter. Draft the conclusions chapter.

Milestone: Finalised implementation chapter. Benchmarks and graphs for non-extended success
criteria complete and added. First complete dissertation draft handed to DoS and supervisor for
feedback.

22/03/2021 - 25/04/2021 (Weeks 24-28)

Flexible time: divide between re-drafting dissertation and adding additional extended success criteria
features, with priority given to re-drafting the dissertation.

Milestone: A finished dissertation and any extended success criteria that have been completed.

26/04/2021 - 09/05/2021 (Weeks 29-30)

New additions freeze. Nothing new should be added to either the dissertation or code at this point.

Milestone: Bug fixes and polishing.

10/05/2021 - 14/05/2021 (Week 31)

The project should already be submitted a week clear of the deadline, so this week has no planned
activity.

Resources Required

• Personal Computer (AMD R9 3950X, 32GB RAM)

• Personal Laptop (AMD i7-8550U, 16GB RAM)

7

Used for development without requiring the lab. Testing this application will require extended
capabilities, which would not be readily available on shared systems.

• Virtualisation Server (2x Intel Xeon X5667, 12GB RAM)

• Backup Virtualisation Server (2x Intel Xeon X5570, 48GB RAM)

A virtualisation server allows controlled testing of the application, without any packets leaving
the physical interfaces of the server.

I accept full responsibility for the above 4 machines and I have made contingency plans to protect
myself against hardware and/or software failure. All resources will be backed up according to the
3-2-1 rule. This would allow me to migrate development and/or testing to the cloud if needed.

Go(Lang) code written will use a version later than that available on the MCS, as the version
currently on the MCS (1.10) does not support Go Modules. Rust is not available on the MCS at the
time of writing. This can be managed by using personal machines or cloud machines accessed via
the MCS.

8

	Table of contents
	List of figures
	1 Introduction
	1.1 Motivation
	1.2 Existing Work
	1.2.1 MultiPath TCP

	1.3 Aims

	2 Preparation
	2.1 Threat Model
	2.1.1 Transparent Security
	2.1.2 Portal to Portal Communication
	2.1.3 Privacy

	3 Implementation
	3.1 TCP
	3.2 UDP
	3.2.1 Packet Structure
	3.2.2 Congestion Control

	3.3 Security
	3.3.1 Symmetric Key Cryptography

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 Line Graphs
	4.3 Success Criteria
	4.3.1 Flow Maintained
	4.3.2 Bidirectional Performance Gains
	4.3.3 IP Spoofing
	4.3.4 Security
	4.3.5 More Bandwidth over Two Equal Connections

	4.4 Extended Goals
	4.4.1 More Bandwidth over Unequal Connections
	4.4.2 More Bandwidth over Four Equal Connections
	4.4.3 Bandwidth Variation
	4.4.4 Connection Loss
	4.4.5 Single Interface Remote Portal
	4.4.6 Connection Metric Values

	4.5 Stretch Goals
	4.5.1 IPv4/IPv6 Support
	4.5.2 UDP Proxy Datagrams
	4.5.3 IP Proxy Packets

	4.6 Performance Evaluation
	4.6.1 Faster Connections Scaling
	4.6.2 Number of Connections Scaling
	4.6.3 Real World Testing

	5 Conclusions
	5.1 Future Work

	Bibliography
	Appendix A Graph Generation Script
	Appendix B Outbound Graphs
	Project Proposal

